Project/Area Number |
18K05148
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 34010:Inorganic/coordination chemistry-related
|
Research Institution | Daido University |
Principal Investigator |
|
Project Period (FY) |
2018-04-01 – 2021-03-31
|
Project Status |
Completed (Fiscal Year 2020)
|
Budget Amount *help |
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2020: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2019: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2018: ¥2,860,000 (Direct Cost: ¥2,200,000、Indirect Cost: ¥660,000)
|
Keywords | 窒素固定 / 金属錯体 / 窒素 / ヒドラジン / アンモニア / 反応機構 / 理論計算 / 鉄錯体 / 反応機構解析 / 分子触媒 |
Outline of Final Research Achievements |
Theoretical calculations have been applied to develop effective catalysts for direct conversion of molecular nitrogen N2 to hydrazine N2H4 (and ammonia NH3). Nishibayashi's group of the University of Tokyo has recently demonstrated the direct N2 conversion of N2H4 and NH3 catalyzed by an iron-N2 complex bearing a pyrrole-based pincer ligand (Fe-PNP). I theoretically investigated the reaction mechanism of the N2 conversion to understand how the selectivity of N2H4 is controlled by Fe-PCP. The calculated results suggest that a Fe-NNH2 intermediate plays a key role in the selectivity of N2H4 formation. Based on the theoretical findings, an iron-N2 complex has been newly prepared by Nishibayashi's group. This complex showed a significantly high catalytic activity (22 times higher than Fe-PNP) and a high selectivity of the N2H4 formation (10% higher than Fe-PNP).
|
Academic Significance and Societal Importance of the Research Achievements |
ヒドラジンは医薬品原料に用いられる窒素化合物で,工業的には窒素から合成したアンモニアを酸化することで製造されている.アンモニアが安定な化合物であるため,窒素からヒドラジンを直接合成するのは困難で,合成にはまわり道を強いられている.最近,金属錯体触媒による直接合成の成功例が報告された. 本研究では,効率よく高選択的にヒドラジンを合成するための触媒設計指針を得るべく,反応機構を詳細に理論解析した.得られた理論的知見を元に,新たな金属錯体が合成され,大幅な触媒活性と選択性の向上を達成できた.今後も,実験と理論計算を組み合わせることで,触媒開発のさらなる効率化を期待できる.
|