Project/Area Number |
18K05159
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 34010:Inorganic/coordination chemistry-related
|
Research Institution | Osaka City University (2020) Kanagawa University (2018-2019) |
Principal Investigator |
Matsubara Yasuo 大阪市立大学, 人工光合成研究センター, 特任准教授 (90616666)
|
Project Period (FY) |
2018-04-01 – 2021-03-31
|
Project Status |
Completed (Fiscal Year 2020)
|
Budget Amount *help |
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2020: ¥390,000 (Direct Cost: ¥300,000、Indirect Cost: ¥90,000)
Fiscal Year 2019: ¥390,000 (Direct Cost: ¥300,000、Indirect Cost: ¥90,000)
Fiscal Year 2018: ¥3,510,000 (Direct Cost: ¥2,700,000、Indirect Cost: ¥810,000)
|
Keywords | 二酸化炭素 / 電気化学触媒 / 還元反応 / CO2還元反応 / 電気化学 / 過電圧 / CO2固定 / 触媒 / 金属錯体 / CO2還元 / 分子触媒 / 標準電極電位 / 二酸化炭素排出削減 |
Outline of Final Research Achievements |
The CO2 fixation, in which carbon dioxide is converted into useful materials using renewable energy, is expected to be a key reaction for the next generation of our society. Heterogeneous or homogeneous catalysts for electrochemical reduction of CO2 have been studied worldwide. However, the problem that high overpotential is required to drive these catalysts at a sufficient rate still remains. In this study, a generalized method to analyze the linear scaling relationship between reaction rate and overpotential was developed to accurately evaluate the performance of various catalysts at an equal footing by formulating a method to calculate the overpotential. Then, it was demonstrated that the precise tuning of the second coordination sphere of catalysts, which has been attracting much attention in recent years, can additively improve catalytic performance.
|
Academic Significance and Societal Importance of the Research Achievements |
経済活動に伴って排出される二酸化炭素を化学製品の形で固定化することは、温室効果ガスの排出削減だけでなく、限りある炭素資源(石油など)を100年単位で温存するための方法として考えられている。この固定化を電気エネルギーにより行う触媒(電気化学触媒と呼ばれる)は、太陽光由来の自然エネルギーや、核融合による発電エネルギーを化学製品の形に変換する数少ない方法であることから、触媒の仕組みの研究が盛んにされている。本研究では、この仕組みを考える上で役に立つ「触媒によるエネルギーの利用効率」を公平かつ正確に評価する方法を構築し、この方法が効率の良い触媒の設計に有用であることも確かめた。
|