• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Studies of clay minerals-water interface by machine learning molecular dynamics simulations and experiments

Research Project

Project/Area Number 18K05208
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 34030:Green sustainable chemistry and environmental chemistry-related
Research InstitutionJapan Atomic Energy Agency

Principal Investigator

Okumura Masahiko  国立研究開発法人日本原子力研究開発機構, システム計算科学センター, 研究主幹 (20386600)

Co-Investigator(Kenkyū-buntansha) 志賀 基之  国立研究開発法人日本原子力研究開発機構, システム計算科学センター, 研究主幹 (40370407)
荒木 優希  立命館大学, 理工学部, 助教 (50734480)
Project Period (FY) 2018-04-01 – 2022-03-31
Project Status Completed (Fiscal Year 2021)
Budget Amount *help
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2020: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2019: ¥520,000 (Direct Cost: ¥400,000、Indirect Cost: ¥120,000)
Fiscal Year 2018: ¥3,120,000 (Direct Cost: ¥2,400,000、Indirect Cost: ¥720,000)
Keywords機械学習 / 分子動力学法 / 粘土鉱物 / 珪酸塩鉱物 / 固液界面 / 原子間力顕微鏡 / 水 / 界面 / 分子動力学
Outline of Final Research Achievements

Machine learning molecular dynamics (MLMD) is a new molecular simulation method with high accuracy and low computational cost. In this study, we succeeded in the MLMD of tobermorite minerals. In addition, we also succeeded in the MLMD simulation of kaolinite, one of the clay minerals. These simulations revealed the physical properties of these materials, which the existing methods failed to evaluate accurately. For example, the microscopic structure of the clay minerals and the vibrational property of the atoms in the clay minerals were evaluated by the MLMD successfully.

Academic Significance and Societal Importance of the Research Achievements

本研究の成果により、珪酸塩鉱物に最新のシミュレーション手法である機械学習分子動力学法が適用可能であり、既存のシミュレーション手法を凌駕する性能が示された。本研究の結果は、多くの種類が存在する粘土鉱物に対して機械学習分子動力学法シミュレーションによる詳細解析の基礎であり、この分野の今後の発展の礎となるものである。
粘土鉱物は環境中の汚染物質等を良く吸着するため、汚染物質等の環境中移動に大きく影響を及ぼすことが知られている。多くの汚染物質の粘土鉱物への吸着様態を知るためには、実験だけでなくシミュレーションも不可欠な手法となっており、本研究は、将来の汚染物質の詳細環境動態解析につながる。

Report

(5 results)
  • 2021 Annual Research Report   Final Research Report ( PDF )
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • Research Products

    (14 results)

All 2022 2021 2020 2018

All Journal Article (4 results) (of which Peer Reviewed: 4 results,  Open Access: 3 results) Presentation (10 results) (of which Int'l Joint Research: 4 results,  Invited: 4 results)

  • [Journal Article] Computational science studies on radiocesium adsorption on clay minerals2021

    • Author(s)
      奥村 雅彦
    • Journal Title

      Chikyukagaku

      Volume: 55 Issue: 4 Pages: 110-121

    • DOI

      10.14934/chikyukagaku.55.110

    • NAID

      130008134779

    • ISSN
      0386-4073, 2188-5923
    • Year and Date
      2021-12-25
    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Machine learning potentials for tobermorite minerals2021

    • Author(s)
      Kobayashi Keita、Nakamura Hiroki、Yamaguchi Akiko、Itakura Mitsuhiro、Machida Masahiko、Okumura Masahiko
    • Journal Title

      Computational Materials Science

      Volume: 188 Pages: 110173-110173

    • DOI

      10.1016/j.commatsci.2020.110173

    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Self-learning hybrid Monte Carlo: A first-principles approach2020

    • Author(s)
      Nagai Yuki、Okumura Masahiko、Kobayashi Keita、Shiga Motoyuki
    • Journal Title

      Physical Review B

      Volume: 102 Issue: 4

    • DOI

      10.1103/physrevb.102.041124

    • Related Report
      2020 Research-status Report
    • Peer Reviewed
  • [Journal Article] Self-learning Monte Carlo method with Behler-Parrinello neural networks2020

    • Author(s)
      Nagai Yuki、Okumura Masahiko、Tanaka Akinori
    • Journal Title

      Physical Review B

      Volume: 101 Issue: 11 Pages: 115111-115111

    • DOI

      10.1103/physrevb.101.115111

    • NAID

      130008147942

    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Open Access
  • [Presentation] Machine learning molecular dynamics simulations of silicate minerals2022

    • Author(s)
      Masahiko Okumura
    • Organizer
      American Chemical Society Meetings & Expos 2022 Spring
    • Related Report
      2021 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] 珪酸塩鉱物の機械学習分子動力学シミュレーション2021

    • Author(s)
      奥村雅彦
    • Organizer
      2021年日本表面真空学会学術講演会
    • Related Report
      2021 Annual Research Report
    • Invited
  • [Presentation] Machine learning potentials for cement and clay minerals2021

    • Author(s)
      Masahiko Okumura, Keita Kobayashi, Hiroki Nakamura, Akiko Yamaguchi, Mitsuhiro Itakura, Masahiko Machida
    • Organizer
      The 2021 International Chemical Congress of Pacific Basin Societies (Pacifichem 2021)
    • Related Report
      2021 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Mechanism of inhomogeneous concentration of Cs in 2:1 Clay minerals: Systematic numerical studies2020

    • Author(s)
      M. Okumura, S. Kerisit, I.C. Bourg, L.N. Lammers, T. Ikeda, M. Sassi, K.M. Rosso, and M. Machida
    • Organizer
      Clay Minerals Society 57th Annual Meeting
    • Related Report
      2020 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Machine learning molecular dynamics studies of clay minerals2020

    • Author(s)
      M Okumura, K. Kobayashi, A. Yamaguchi, H. Nakamura, M. Itakura, and M. Machida
    • Organizer
      Goldschmidt 2020
    • Related Report
      2020 Research-status Report
    • Int'l Joint Research
  • [Presentation] 福島環境回復及び廃炉に向けた放射性セシウムの原子スケール動態計算2020

    • Author(s)
      奥村雅彦
    • Organizer
      日本原子力学会2021年春の年会
    • Related Report
      2020 Research-status Report
    • Invited
  • [Presentation] セメント水和物に対する機械学習分子動力学方による解析2020

    • Author(s)
      小林恵太, 中村博樹, 山口瑛子, 板倉充洋, 町田昌彦, 奥村雅彦
    • Organizer
      日本原子力学会2020年秋の大会
    • Related Report
      2020 Research-status Report
  • [Presentation] 粘土鉱物の機械学習力場の開発2020

    • Author(s)
      奥村雅彦、小林恵太、山口瑛子
    • Organizer
      日本原子力学会2020年春の年会
    • Related Report
      2019 Research-status Report
  • [Presentation] 二酸化トリウムの機械学習分子動力学法シミュレーション2018

    • Author(s)
      奥村 雅彦、小林 恵太、中村 博樹、板倉 充洋、町田 昌彦
    • Organizer
      日本原子力学会「2019年春の年会」
    • Related Report
      2018 Research-status Report
  • [Presentation] LAUE-RISM法によるmica上の電気二重層 シミュレーション解析2018

    • Author(s)
      安藤康伸、奥村雅彦
    • Organizer
      2018年度 日本地球化学会年会
    • Related Report
      2018 Research-status Report

URL: 

Published: 2018-04-23   Modified: 2023-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi