Electroactive materials possessing cavity sites
Project/Area Number |
18K05270
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 36010:Inorganic compounds and inorganic materials chemistry-related
|
Research Institution | National Institute for Materials Science (2020) Tokyo Institute of Technology (2018-2019) |
Principal Investigator |
MIZOGUCHI Hiroshi 国立研究開発法人物質・材料研究機構, 国際ナノアーキテクトニクス研究拠点, NIMS特別研究員 (50598414)
|
Project Period (FY) |
2018-04-01 – 2021-03-31
|
Project Status |
Completed (Fiscal Year 2020)
|
Budget Amount *help |
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2020: ¥390,000 (Direct Cost: ¥300,000、Indirect Cost: ¥90,000)
Fiscal Year 2019: ¥520,000 (Direct Cost: ¥400,000、Indirect Cost: ¥120,000)
Fiscal Year 2018: ¥3,380,000 (Direct Cost: ¥2,600,000、Indirect Cost: ¥780,000)
|
Keywords | 電子化物 / 電子構造 / 窒化物 / 固体化学 / 金属間化合物 / プラズマ合成 / エレクトライド / 包接化合物 / アルカリ金属窒化物エレクトライドの合成 / 新エレクトライド物質の探索 |
Outline of Final Research Achievements |
Inorganic clathrates have provided a platform for rich intercalation chemistry and have been used widely in application. Among these, the inner cavity space rarely affects the electronic structure of the framework. We report that the anti-ReO3-type compound Na3N has a metallic nature irrespective of the stoichiometric chemical composition of simple representative elements and that this unusual nature originates from the collapse of the bandgap owing to the presence of a crystallographic cavity. Na3N is a unique nitride, which possesses an electronically active cavity space. We also found intermetallic materials possessing crystallographic cavity sites. The cavity space is occupied by anionic electrons, that is, these have electronic structure like electrides. These materials loaded with Ru particles worked as an efficient catalyst for ammonia synthesis.
|
Academic Significance and Societal Importance of the Research Achievements |
包接化合物は、溶媒のように、分子やイオンを取り込むことが可能な固体物質であり、脱臭剤や二次電池などに、幅広く利用されている。従来、包接化合物中の隙間は、挿入物の導入の場として、その“空間的サイズ”が利用されることが多かった。しかるに、構造内にすき間を有する窒化物Na3Nでは、あたかも、そのすき間が第3の原子であるかの如く振る舞い、Na/N/すき間の三者間で化学結合を形成し、金属伝導を発現することを、我々は見出した。電子活性なすき間は、社会に役立つ包接化合物材料の設計に新たな可能性を与える。
|
Report
(4 results)
Research Products
(5 results)