Project/Area Number |
18K05295
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 36020:Energy-related chemistry
|
Research Institution | Kyoto University |
Principal Investigator |
Hachiya Kan 京都大学, エネルギー科学研究科, 准教授 (90314252)
|
Project Period (FY) |
2018-04-01 – 2021-03-31
|
Project Status |
Completed (Fiscal Year 2020)
|
Budget Amount *help |
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2020: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2019: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2018: ¥3,120,000 (Direct Cost: ¥2,400,000、Indirect Cost: ¥720,000)
|
Keywords | 自由電子レーザー / ラマン散乱 / 中赤外線 / フォノン |
Outline of Final Research Achievements |
We developed a new phonon spectroscopy to investigate thermal processes in solids, which is considered to work as a loss in wide range of energy production and storage. Free electron laser (FEL) light source was utilized as the tool to this method. With the wavelength-tunable mid-infrared FEL, any individual optical phonon mode is expected to be selected and optically excited in order to elucidate its role in the emergence of physical properties. Single crystal diamond was chosen as a sample to scale up this method to include infrared inactive phonon mode excitation. We have succeeded in the selective excitation of the infrared-inactive mode in diamond. Nevertheless, red-shift of the mode, which results from surface damage induced by intense laser irradiation, occurred. In order to eliminate the damage and phonon red-shift, measurement system was fully updated. The improvement was successful, and the scale-up of the method was fulfilled.
|
Academic Significance and Societal Importance of the Research Achievements |
近年、「フォノンエンジニアリングという概念が創生されるにともなって、ナノレベルでのフォノンの振る舞いから次世代メモリやパワー半導体のよりすぐれた特性、熱電素子のような直接熱制御の関わるデバイスの性能を、光エネルギー利用半導体における格子振動特性と合わせて、統一的に理解し、より革新的な材料開発に生かそうとする流れが生まれている。本研究では、中赤外自由電子レーザー光源を利用した新しいフォノン分光の確立を目指すことにより、FEL励起による選択的モード励起がエネルギー現象における重要な諸物性の発現メカニズムの解明へ応用可能であることが、学術的・社会的意義である。
|