Project/Area Number |
18K05384
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 38020:Applied microbiology-related
|
Research Institution | Kyoto University (2019-2020) Tohoku University (2018) |
Principal Investigator |
Yoshimi Akira 京都大学, 農学研究科, 特定准教授 (60436102)
|
Project Period (FY) |
2018-04-01 – 2021-03-31
|
Project Status |
Completed (Fiscal Year 2020)
|
Budget Amount *help |
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2020: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2019: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
Fiscal Year 2018: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
|
Keywords | 糸状菌 / 菌糸接着 / 基質認識 / 基質定着 / α-1,3-グルカン / ガラクトサミノガラクタン / ECM |
Outline of Final Research Achievements |
The cells of filamentous fungi, which are eukaryotic microorganisms, are covered with a cell wall composed of polysaccharides and an extracellular matrix (ECM). The physical characteristics of these cell surface layers are important for the fungi to colonize and invade the solid substrates. In this study, based on biochemical analyses of the water-soluble secreted polysaccharide galactosaminogalactane (GAG) of Aspergillus oryzae, it was revealed that GAG is a hyphal adhesion factor and that the deacetylation of GalNAc residues in GAG is important for hyphal adhesion. The results of the analyses using phytopathogenic fungi suggested that the hyphal adhesion via ECM is a general phenomenon in filamentous fungi. From the analyses of signal transduction systems, which are important for the substrate recognition and the response to extracellular environmental stresses, we have obtained some new insights into the substrate recognition and the cellular responses in filamentous fungi.
|
Academic Significance and Societal Importance of the Research Achievements |
糸状菌は、バイオマス分解を介して地球規模の物質循環に寄与し、酵素生産など産業利用される種も存在する。糸状菌による固体基質の攻略はまず菌糸細胞と基質の接触から始まる。したがって、本研究により得られた細胞外分泌多糖GAGを介した菌糸接着機構についての知見は、糸状菌の生存戦略の根幹を理解する足掛かりとなり、地球規模の物質循環を支える糸状菌を制御することにも繋がる。また、本成果は、糸状菌の高密度培養技術を発展させる可能性があり、基礎科学及び産業応用の両面への波及効果が期待できる。さらに、植物病原菌における細胞表層物質の解析結果は、基質定着機構の理解を介して病原糸状菌の防除へと繋がる可能性がある。
|