• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Impact of Activation of the Neotrehalosadiamine/Kanosamine Biosynthetic Pathway on the Metabolism of Bacillus subtilis

Research Project

Project/Area Number 18K05403
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 38020:Applied microbiology-related
Research InstitutionNational Agriculture and Food Research Organization

Principal Investigator

INAOKA TAKASHI  国立研究開発法人農業・食品産業技術総合研究機構, 食品研究部門, 上級研究員 (40391205)

Project Period (FY) 2018-04-01 – 2021-03-31
Project Status Completed (Fiscal Year 2020)
Budget Amount *help
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2020: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
Fiscal Year 2019: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2018: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Keywordsグルコース6リン酸デヒドロゲナーゼ / ペントースリン酸経路 / NADPH / オートインデューサー / ネオトレハロサジアミン / カノサミン / メタボローム / 枯草菌 / 二次代謝 / TCA回路 / NTD / 代謝
Outline of Final Research Achievements

The pentose phosphate (PP) pathway is one of the major sources of cellular NADPH. A B. subtilis zwf mutant that lacks glucose-6-phosphate dehydrogenase (the enzyme that catalyzes the first step of the PP pathway) showed inoculum-dose-dependent growth. This growth defect was suppressed by glcP disruption, which causes the upregulation of an autoinducer neotrehalosadiamine (NTD)/kanosamine biosynthetic pathway. A metabolome analysis showed that the stimulation of NTD/kanosamine biosynthesis caused significant accumulation of TCA cycle intermediates and NADPH. Because the major malic enzyme YtsJ concomitantly generates NADPH through malate-to-pyruvate conversion, de novo NTD/kanosamine biosynthesis can result in an increase in the intracellular NADPH pool via the accumulation of malate. In fact, a zwf mutant grew in malate-supplemented medium. Our results suggest that NTD/kanosamine has the potential to modulate the carbon-energy metabolism through an autoinduction mechanism.

Academic Significance and Societal Importance of the Research Achievements

枯草菌を含む複数のバチルス属細菌が生産するネオトレハロサジアミン(NTD)はカノサミン2分子が結合した機能不明のオートインデューサーである。NTD/カノサミンは自身の生合成経路を活性化することによりTCA回路の代謝中間体を増大させることが判明した。これはNTD/カノサミンが細菌の中心的な代謝経路を直接または間接的に調節することを示唆しており、菌体外物質を活用した細菌集団の代謝制御技術の開発へと繋がるものである。

Report

(4 results)
  • 2020 Annual Research Report   Final Research Report ( PDF )
  • 2019 Research-status Report
  • 2018 Research-status Report
  • Research Products

    (3 results)

All 2021 2019

All Journal Article (1 results) (of which Peer Reviewed: 1 results) Presentation (2 results)

  • [Journal Article] Impact of Activation of the Neotrehalosadiamine/Kanosamine Biosynthetic Pathway on the Metabolism of Bacillus subtilis2021

    • Author(s)
      Natsumi Saito, Huong Minh Nguyen, Takashi Inaoka
    • Journal Title

      Journal of Bacteriology

      Volume: 203 Issue: 9

    • DOI

      10.1128/jb.00603-20

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed
  • [Presentation] 枯草菌のオートインデューサーNTDによる中心代謝制御2019

    • Author(s)
      稲岡隆史、斎藤菜摘、Nguyen Minh Huong
    • Organizer
      令和元年度 グラム陽性菌ゲノム機能会議
    • Related Report
      2019 Research-status Report
  • [Presentation] 枯草菌のオートインデューサー・ネオトレハロサジアミン過剰生産による代謝調節2019

    • Author(s)
      稲岡隆史、斎藤菜摘、Nguyen Minh Huong
    • Organizer
      第42回日本分子生物学会
    • Related Report
      2019 Research-status Report

URL: 

Published: 2018-04-23   Modified: 2022-12-28  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi