Modeling crop growth by using hybrid Petri net and deep learning
Project/Area Number |
18K05914
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 41040:Agricultural environmental engineering and agricultural information engineering-related
|
Research Institution | National Agriculture and Food Research Organization |
Principal Investigator |
Guan Senlin 国立研究開発法人農業・食品産業技術総合研究機構, 九州沖縄農業研究センター, 上級研究員 (30554092)
|
Co-Investigator(Kenkyū-buntansha) |
鹿内 健志 琉球大学, 農学部, 教授 (20264476)
深見 公一郎 国立研究開発法人農業・食品産業技術総合研究機構, 九州沖縄農業研究センター, 上級研究員 (50399424)
名嘉村 盛和 琉球大学, 工学部, 教授 (80237437)
|
Project Period (FY) |
2018-04-01 – 2021-03-31
|
Project Status |
Completed (Fiscal Year 2020)
|
Budget Amount *help |
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2020: ¥520,000 (Direct Cost: ¥400,000、Indirect Cost: ¥120,000)
Fiscal Year 2019: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2018: ¥2,860,000 (Direct Cost: ¥2,200,000、Indirect Cost: ¥660,000)
|
Keywords | ハイブリッドペトリネット / 作物生育モデル / 生育形質 / ドローン / リモートセンシング / 生育指標 / AI / 並列高速コンピューティング |
Outline of Final Research Achievements |
Crops growing under natural conditions have their growth traits such as plant height, number of stems, number of leaves, number of ears, etc. They have to respond to many uncertain external factors including surrounding environmental conditions and human activities during their entire life cycle. Modeling crop growth requires considering not only the growth traits but also the uncertain external factors. In this study, we have developed a new crop growth model that can deal with any possible growth-related trait and external factor, not limited to several types of growth traits and external factors applied to conventional crop growth models. When applying this model to some crops like rice, wheat, and sugarcane, the growth process, growth-related traits, and external factors were well modeled and simulated along with the growth time. The modeling result assists to propose and review an optimum cultivation plan for improving yield or quality.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究で開発した作物生育に対する一体化モデリングする手法は、多くの外的要因に影響される自然環境下の作物に対応できる初めてのモデリング手法である。また、生育形質の連続的変化に対する新しい計測機材と方法(特許出願済)は独創的であった。 開発したモデルを利用し、作物の生育が時間経過に伴う状態と変化を可視化または予測することができ、営農生産中の適期管理が可能となった。また、大豆・トウモロコシ・飼料作物などの全ての土地利用型作物に応用可能であるため汎用性は高い。
|
Report
(4 results)
Research Products
(17 results)