Project/Area Number |
18K06163
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 43040:Biophysics-related
|
Research Institution | Nara Institute of Science and Technology |
Principal Investigator |
Nakashima Satoru 奈良先端科学技術大学院大学, 研究推進機構, URA(チーフ) (80263234)
|
Co-Investigator(Kenkyū-buntansha) |
廣田 俊 奈良先端科学技術大学院大学, 先端科学技術研究科, 教授 (90283457)
|
Project Period (FY) |
2018-04-01 – 2021-03-31
|
Project Status |
Completed (Fiscal Year 2020)
|
Budget Amount *help |
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2020: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2019: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2018: ¥2,860,000 (Direct Cost: ¥2,200,000、Indirect Cost: ¥660,000)
|
Keywords | ラマン顕微鏡 / 逆ラマン現象 / ポンププローブ法 / 2次元検出器 / リアルタイム / 細胞ダイナミクス / 小分子 / 非染色・非侵襲 / ポンプ-プローブ法 / 2次元検出器 / 脂質モデル / 逆ラマン分光法 / 顕微 |
Outline of Final Research Achievements |
As basic data, I constructed an optical system with a single detection element, and then acquired data on the detection limit level of this system. A microscopic optical system was constructed, and two colors of light were incident coaxially, and detections were performed in an arrangement that allows observation of a region of several tens of micro meter. Through the precise design of the optical system, I was able to develop a single-channel inverse Raman microscope that can detect intensity changes of 0.06% or less in near real time (2 seconds). Using this device, I succeeded in microscopic observation of a sample using oil droplets in an aqueous solution as a model substance for lipids by this reverse Raman measurement system. In the next step, I replaced a single element with a CMOS-type ultra-high-speed two-dimensional detector, and replaced the optical system with the aim of creating an imaging-type inverse Raman microscope.
|
Academic Significance and Societal Importance of the Research Achievements |
細胞内のタンパク質や小分子の分布、特にその動的過程は細胞の機能を調べる上で非常に重要である。生きた細胞を非侵襲、非標識で直接観測することができれば極めて有効な手段となる。ラマン分光法は原理的にはこのような目的には最適であるが、感度が低くまた積算時間がかかることが壁となってきていた。近年格段に進歩してきた、高繰り返しレーザと高速検出器を活用して、逆ラマン分光法という非線形現象を利用することで、これらの難点を克服できると考え研究を進めた。細胞内の生命現象をライブで捉えて観察できることは、細胞生物学のステージを上げることに繋がり、がん細胞の形成過程など疾病治療への道も開ける。
|