Elucidation of structure-function relationship by controlling the association of magnetoreceptor protein complex
Project/Area Number |
18K06174
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 43040:Biophysics-related
|
Research Institution | National Institutes for Quantum and Radiological Science and Technology |
Principal Investigator |
ARAI Shigeki 国立研究開発法人量子科学技術研究開発機構, 量子生命科学領域, 上席研究員(定常) (00391269)
|
Project Period (FY) |
2018-04-01 – 2021-03-31
|
Project Status |
Completed (Fiscal Year 2020)
|
Budget Amount *help |
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2020: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2019: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2018: ¥2,860,000 (Direct Cost: ¥2,200,000、Indirect Cost: ¥660,000)
|
Keywords | タンパク質 / 立体構造 / X線小角散乱 / 磁覚 / X線結晶解析 / 円偏光二色性 / タンパク質・核酸の構造・動態・機能 |
Outline of Final Research Achievements |
The ISCA1 protein, together with the cryptochrome protein, may play a role in the mechanism of magnetoreception. In order to clarify the structural and physical properties of ISCA1, we performed the small-angle X-ray scattering analysis under both applied and non-applied magnetic fields. We found that (i) the pigeon’s ISCA1 molecule exhibits the structural polymorphism and forms two types of protomers (spherical and rod-shaped), (ii) the spherical ISCA1 molecule forms columnar oligomers and can bind iron-sulfur clusters on the oligomer’s interface to increase its magnetic susceptibility and magnetic anisotropy, and (iii) the growth of ISCA1 columnar oligomer is controlled by magnetic field. These findings will contribute to the understanding of the molecular basis of magnetoreception.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究では、ISCA1の構造・物性だけでなく、他の蛋白質では殆ど例の無い自己会合の磁気的制御の可能性も明らかにした。本成果は、磁覚の蛋白質分子基盤の解明に大きく貢献するとともに、多くの新奇的技術・材料の創出につながる可能性がある。例えば、ISCA1と他の蛋白質を融合する分子設計を行うことで、磁気を使って蛋白質分子配向・細胞挙動などを操作する技術の開発、外部磁場に応じて機能や配向を変える磁気応答バイオアクチュエーターの開発、磁場により非侵襲的に生体内局所濃度や効能を制御できる新薬開発などが期待できる。
|
Report
(4 results)
Research Products
(7 results)