Quantitative high-precision live-cell single-molecule imaging of focal adhesion molecules
Project/Area Number |
18K06217
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 44010:Cell biology-related
|
Research Institution | Kyoto University |
Principal Investigator |
|
Project Period (FY) |
2018-04-01 – 2021-03-31
|
Project Status |
Completed (Fiscal Year 2020)
|
Budget Amount *help |
¥4,550,000 (Direct Cost: ¥3,500,000、Indirect Cost: ¥1,050,000)
Fiscal Year 2020: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2019: ¥1,820,000 (Direct Cost: ¥1,400,000、Indirect Cost: ¥420,000)
Fiscal Year 2018: ¥1,820,000 (Direct Cost: ¥1,400,000、Indirect Cost: ¥420,000)
|
Keywords | 1分子イメージング / アクチン / 細胞内流動 / 細胞接着 / 定量的イメージング / 数理モデル / 接着斑 / 細胞運動 / 細胞内蛍光1分子顕微鏡 / 定量ライブイメージング / 数理モデル解析 / ミオシン / 一分子イメージング / ライブイメージング / アクチン細胞骨格 / メカノセンサー分子 |
Outline of Final Research Achievements |
At the cell leading edge, the retrograde actin flow, continuous centripetal movement of the actin network, is widely observed in adherent cells. During cell migration, linkage between the retrograde actin flow network and integrin-based focal adhesions is believed to promote cell protrusion. However, how focal adhesion molecules link to the actin network moving along the retrograde flow remains unclear. Single-Molecule Speckle (SiMS) microscopy is a powerful approach to directly monitor the mechanics linking actin dynamics and cell adhesion at the molecular level. By using SiMS, I revealed several focal adhesion components including Vinculin and Talin exhibit flow-associated motion along the retrograde actin flow in lamellipodia. Furthermore, I revealed an actin dynamics-based mechanism that causes possible errors in quantitative live-cell imaging. Our findings provide new insights into the physiological roles of the retrograde actin flow in cell migration.
|
Academic Significance and Societal Importance of the Research Achievements |
生きた細胞の中で生体分子の動態を計測する定量的な蛍光バイオイメージングは、様々な生命現象の解明に用いられている。本研究では、細胞仮足で広く観察されるアクチン求心性流動の定量イメージングを行った過程で、汎用されるアクチン結合プローブが、細胞仮足の後方に偏る局在ミスを示すことを見出した。さらに、細胞内流動に起因する分子勾配配置モデルを考案し、アクチン結合型蛍光プローブが、アクチン流動の影響を受けて不正確な分布を示すことを実験と数理モデル解析により初めて明らかにした。本成果は生命科学分野における重要な注意喚起であるとともに、細胞内流動によって分子が濃度勾配を作るメカニズムの理解につながる発見である。
|
Report
(4 results)
Research Products
(21 results)