Molecular codes which determine the depth of final axonal stabilizing layer in the Drosophila
Project/Area Number |
18K06250
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 44020:Developmental biology-related
|
Research Institution | Tokyo Institute of Technology |
Principal Investigator |
|
Project Period (FY) |
2018-04-01 – 2021-03-31
|
Project Status |
Completed (Fiscal Year 2020)
|
Budget Amount *help |
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2020: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2019: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2018: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
|
Keywords | 軸索投射 / シナプス形成 / ショウジョウバエ / 視神経 / 視神経系 |
Outline of Final Research Achievements |
In the Drosophila visual system, photoreceptor axons reach the correct layer in the middle pupal stage and start to form the synapses. To form the functional neuronal network, we hypothesized that the targeting layers are determined according to the molecular codes consisting of transmembrane proteins and cell adhesion molecules. We focused on the four molecules, LAR, Ptp69D, N-Cadherin (CadN) and Capricious(Caps) and tested genetically if they interact each other. Our results revealed that both CadN and Caps interact with LAR to stabilize the R7 photoreceptor axons to proper M6 layer. We also analyzed the interaction between LAR and Neuroligin(Nlg) and its receptor Neurexin(Nrx) on synapse formation. Nlg is known to be required for synapse formation and interact with LAR in mammals. Among three Nlgs (Nlg1、Nlg2、Nlg3) in Drosophila, Nlg2 seemed to have function on synapse formation together with Nrx1.
|
Academic Significance and Societal Importance of the Research Achievements |
脳神経系の正常な機能には、軸索が正しい位置に投射することが必要である。本研究では、ショウジョウバエの最大の強みである複雑な遺伝学的操作と、短期間で詳細な生体内機能解析が可能である利点を利用して、ショウジョウバエの視神経において複数の分子の発現を操作することにより、伝達回路形成の過程を解析した。その結果、神経の投射先は複数の分子の組み合わせによって決定されていることが分かった。このような、神経同士をつなぐ分子が解明されれば、人工的に神経接続を誘導することができるようになり、神経再生や移植の技術につながると考えている。
|
Report
(4 results)
Research Products
(13 results)