• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Functional population analysis of the recurrent network in the Drosophila mushroom bodies as the basis of the olfactory memory consolidation.

Research Project

Project/Area Number 18K06328
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 44050:Animal physiological chemistry, physiology and behavioral biology-related
Research InstitutionThe University of Tokyo

Principal Investigator

Hiroi Makoto  東京大学, 定量生命科学研究所, 助教 (80597831)

Project Period (FY) 2018-04-01 – 2021-03-31
Project Status Completed (Fiscal Year 2020)
Budget Amount *help
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2020: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2019: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2018: ¥1,820,000 (Direct Cost: ¥1,400,000、Indirect Cost: ¥420,000)
Keywordsassociative memory / olfaction / Drosophila / 連想記憶 / リカレント回路 / ショウジョウバエ / キノコ体 / 嗅覚 / 連合学習 / 光遺伝学 / 記憶 / 記憶学習
Outline of Final Research Achievements

To tune the intensity and temporal control of the conditioned stimuli, we have set up a system of associative learning that artificially activates a group of nerves expressing arbitrary olfactory receptors by means of optogenetics. It is now easier to analyze recurrent circuits by activating dopaminergic nerves. This year, we tested several conditions of the timing of each stimulus in addition to the experimental time, light intensity, and odor concentration for the device of behavioral experiments for photogenetics, and explored the conditions under which the learning scores obtained are stable. By artificially changing olfactory neurons to be activated, a variety of learning performances from low to high scores were confirmed. By changing the dopaminergic neurons activated during conditioning, we were able to achieve stable associative learning in both avoidance and reward learning.

Academic Significance and Societal Importance of the Research Achievements

数百におよぶ脳神経の生理活性を同時記録し自発的な活性から学習依存的に変化する神経応答を解析するためには、厳密な実験条件の検討とデータ取得が必須である。本研究は、光遺伝学的手法による特定神経の活性化を用いることで、嗅覚神経入力を高い精度で制御することができた。また、キノコ体神経のカルシウム応答を学習前後にわたって安定して記録できる系を組み合わせた。このスキームは嗅覚関連学習だけでなく幅広い分野で活用できる。

Report

(4 results)
  • 2020 Annual Research Report   Final Research Report ( PDF )
  • 2019 Research-status Report
  • 2018 Research-status Report
  • Research Products

    (6 results)

All 2019 2018 Other

All Journal Article (1 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 1 results,  Open Access: 1 results) Presentation (1 results) Remarks (4 results)

  • [Journal Article] Two Parallel Pathways Assign Opposing Odor Valences during Drosophila Memory Formation2018

    • Author(s)
      Yamazaki Daisuke、Hiroi Makoto、Abe Takashi、Shimizu Kazumichi、Minami-Ohtsubo Maki、Maeyama Yuko、Horiuchi Junjiro、Tabata Tetsuya
    • Journal Title

      Cell Reports

      Volume: 22 Issue: 9 Pages: 2346-2358

    • DOI

      10.1016/j.celrep.2018.02.012

    • Related Report
      2018 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Presentation] Analysis of state-dependent odor response in compartmentalized Drosophila mushroom body γ neurons2019

    • Author(s)
      Takashi Abe, Tetsuya Tabata, Makoto Hiroi
    • Organizer
      OIST meeting
    • Related Report
      2019 Research-status Report
  • [Remarks]

    • URL

      https://www.u-tokyo.ac.jp/focus/ja/people/people000305.html

    • Related Report
      2018 Research-status Report
  • [Remarks]

    • URL

      https://researchmap.jp/hiroi/

    • Related Report
      2018 Research-status Report
  • [Remarks]

    • Related Report
      2018 Research-status Report
  • [Remarks]

    • URL

      https://publons.com/researcher/259315/makoto-hiroi

    • Related Report
      2018 Research-status Report

URL: 

Published: 2018-04-23   Modified: 2022-01-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi