Project/Area Number |
18K06828
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 48010:Anatomy-related
|
Research Institution | Hiroshima University (2020) Hamamatsu University School of Medicine (2018-2019) |
Principal Investigator |
Horikawa Makoto 広島大学, 統合生命科学研究科(先), 特任助教 (50775997)
|
Project Period (FY) |
2018-04-01 – 2021-03-31
|
Project Status |
Completed (Fiscal Year 2020)
|
Budget Amount *help |
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2020: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2019: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2018: ¥1,820,000 (Direct Cost: ¥1,400,000、Indirect Cost: ¥420,000)
|
Keywords | イメージング / 質量顕微鏡法 / 脂質 / 神経 / 神経細胞 / 質量顕微鏡 / 脂肪酸 / リン脂質 / 蛍光顕微鏡 / 脂質輸送 / 解剖学 |
Outline of Final Research Achievements |
By time-lapse microscopy using a fluorescent-tagged fatty acid, we found there is an unknown delivery mechanism of lipid molecules from the cell body to the tip of the neurite in the nerve cells. To observe the distribution of lipid molecules on the neurites comprehensively, we developed a novel cell sample preparation method for TOF-SIMS analysis by applying the sample pre-treatment method of electron microscopy. Using this new method, we successfully observed the distribution of lipid molecules corresponding to the ultrastructure of cells such as the endoplasmic reticulum at a spatial resolution of 200 to 500 nm by TOF-SIMS. We could also visualize the distribution of multiple fatty acids on the neurites using the combination of TOF-SIMS and the new method. However, we faced another difficulty that it was harder to detect polyunsaturated fatty acids as compared with saturated- and monounsaturated fatty acids.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究により、神経突起上の脂質分子輸送には異方性がある事が明らかとなった。また、本研究で開発された細胞試料調製法を応用したTOF-SIMS観察により神経突起1本ずつの脂質分子分布を網羅的に観察できる事を明らかにした。さらに、小胞体など細胞の微細構造に対応した脂質分子分布も数百nmの空間解像度で観察できる事を明らかにした。電子顕微鏡法と同様に、質量顕微鏡法においても試料調製が高解像度化において極めて重要である事を明らかにし、適切な前処理を行う事で神経突起のような微細構造に対しても質量顕微鏡観察が可能である事を実証した。
|