Project/Area Number |
18K06993
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 49020:Human pathology-related
|
Research Institution | Fukushima Medical University |
Principal Investigator |
Tanaka Mizuko 福島県立医科大学, 医学部, 博士研究員 (40583638)
|
Co-Investigator(Kenkyū-buntansha) |
千葉 英樹 福島県立医科大学, 医学部, 教授 (00295346)
東 智仁 福島県立医科大学, 医学部, 准教授 (70515072)
|
Project Period (FY) |
2018-04-01 – 2021-03-31
|
Project Status |
Completed (Fiscal Year 2020)
|
Budget Amount *help |
¥4,550,000 (Direct Cost: ¥3,500,000、Indirect Cost: ¥1,050,000)
Fiscal Year 2020: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2019: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2018: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
|
Keywords | 腸管幹細胞 / CLMP / JAMファミリー / 蠕動 / 腸上皮幹細胞 / タイト結合 / クローディン / ゲノム編集 / 腸管オルガノイド / 病理学 |
Outline of Final Research Achievements |
This study aimed to clarify the mechanism of fate decision of intestinal stem cells. Although tight junctions are well-known to be responsible for barrier function, our lab hypothesized that tight junction molecules including claudins regulate the fate of the stem cells. As a result, we could not find any evidence that claudins are involved in the maintenance or differentiation. Thus, we examined other tight junction molecule CLMP, a causative gene of human congenital short bowel disease. We made monoclonal antibodies against CLMP and examined the localization. CLMP was localized around the intestinal plexus, which regulate peristalsis of the intestine. A recent report showed that CLMP-KO mice exhibit peristalsis defect, which fits well with our observation. We are currently working on precise identification of CLMP-expressing cells.
|
Academic Significance and Societal Importance of the Research Achievements |
これまで、タイト結合分子の神経叢組織での機能はほとんど知られていませんでした。CLMPがつくる細胞接着構造が分かれば、神経叢組織においてタイト結合の果たす役割の解明につながると期待できます。また、腸の蠕動運動は自律神経の支配を受け、消化の効率に影響します。蠕動運動を司る分子機構の解明は、先天性の短腸症候群のみならず、自律神経失調症を含むさまざまな消化障害の理解につながり、治療法の開発につながると考えられます。
|