• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Machine learning algorithms for predicting outcomes after prostate brachytherapy

Research Project

Project/Area Number 18K07644
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 52040:Radiological sciences-related
Research InstitutionKeio University

Principal Investigator

Shiraishi Yutaka  慶應義塾大学, 医学部(信濃町), 講師 (00445339)

Project Period (FY) 2018-04-01 – 2021-03-31
Project Status Completed (Fiscal Year 2020)
Budget Amount *help
¥3,770,000 (Direct Cost: ¥2,900,000、Indirect Cost: ¥870,000)
Fiscal Year 2020: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2019: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2018: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Keywords放射線治療 / 小線源治療 / 前立腺癌 / 機械学習 / ニューラルネットワーク
Outline of Final Research Achievements

Machine learning classification algorithms for prediction of treatment response are becoming more popular in radiotherapy literature. The purpose of this study is to estimate their discriminative performance for outcome prediction after prostate permanent brachytherapy. Machine learning algorithms yield higher discriminative performance in toxicity prediction after permanent prostate brachytherapy than single dosimetric parameter. Our results also show that machine learning algorithms can predict clinical recurrence after prostate brachytherapy.

Academic Significance and Societal Importance of the Research Achievements

本研究で構築したモデルを活用し、前立腺癌小線源治療後の有害事象出現や再発リスクの高い症例をスクリーニングできる可能性が示唆された。特に、臨床的再発部位を予測することで、再発予防に適した後治療(例えば骨盤リンパ節転移の可能性が高い症例には骨盤領域に対する予防照射を行うなど)を検討できる。治療後の有害事象や再発予防につなげることで、個人のQOL向上が期待されるだけでなく、社会全体としての医療費の削減にも寄与できる可能性がある。

Report

(4 results)
  • 2020 Annual Research Report   Final Research Report ( PDF )
  • 2019 Research-status Report
  • 2018 Research-status Report
  • Research Products

    (3 results)

All 2020 2019

All Presentation (3 results) (of which Int'l Joint Research: 1 results)

  • [Presentation] Machine Learning Algorithms for Late Toxicity Prediction after Prostate Permanent Brachytherapy2020

    • Author(s)
      Y. Shiraishi, T. Tanaka, K. Toya, A. Yorozu, and N. Shigematsu
    • Organizer
      2020 ASTRO Annual Meeting
    • Related Report
      2020 Annual Research Report
    • Int'l Joint Research
  • [Presentation] 機械学習を用いた前立腺癌シード治療後の再発予測モデル構築の試み2020

    • Author(s)
      白石悠、萬篤憲、征矢野崇、酢谷真也、戸矢和仁、茂松直之
    • Organizer
      日本放射線腫瘍学会第33回学術大会
    • Related Report
      2020 Annual Research Report
  • [Presentation] 機械学習を用いた前立腺癌シード治療後直腸有害事象予測モデル構築の試み2019

    • Author(s)
      白石悠、田中智樹、澤田将史、砂口歩、小池直義、公田龍一、隈部篤寛、吉田佳代、深田淳一、大橋俊夫、深田恭平、花田剛士、戸矢和仁、萬篤憲、茂松直之
    • Organizer
      日本放射線腫瘍学会第32回学術大会
    • Related Report
      2019 Research-status Report

URL: 

Published: 2018-04-23   Modified: 2022-01-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi