• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Development of the prognosis prediction model in patients with head and neck cancer using tumor biological characteristics-reflected MRI data and the artificial intelligence-based analysis

Research Project

Project/Area Number 18K07661
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 52040:Radiological sciences-related
Research InstitutionHokkaido University

Principal Investigator

Fujima Noriyuki  北海道大学, 大学病院, 講師 (80431360)

Co-Investigator(Kenkyū-buntansha) 本間 明宏  北海道大学, 医学研究院, 教授 (30312359)
Project Period (FY) 2018-04-01 – 2021-03-31
Project Status Completed (Fiscal Year 2020)
Budget Amount *help
¥3,510,000 (Direct Cost: ¥2,700,000、Indirect Cost: ¥810,000)
Fiscal Year 2020: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2019: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2018: ¥1,950,000 (Direct Cost: ¥1,500,000、Indirect Cost: ¥450,000)
KeywordsMRI / 人工知能 / 頭頸部癌 / 頭頚部癌 / 予後予測 / 画像診断 / 頭頚部扁平上皮癌
Outline of Final Research Achievements

Firstly, we tried to depict the tumor biological characteristics which related to patient's prognosis using diffusion and perfusion-based MR technique in head and neck cancer. We successfully visualized the tumor growth rate, tumor perfusion and the presence of hypoxic area as tumor functional information. Next, we developed the prognosis prediction model in patients with head and neck cancer using the abovementioned MR-based tumor functional information. Machine learning technique was selected for the development of this diagnostic model. After the optimization of hyperparameters in machine learning model, high diagnostic accuracy to predict patient's treatment outcome could be successfully accomplished.

Academic Significance and Societal Importance of the Research Achievements

本検討は非侵襲的な画像化が難しいとされていた腫瘍の生物学的性状を反映した画像情報を、非造影のMRI技術である動脈スピン標識法および多数のb値を用いた拡散強調像のみで画像化することに成功した。また、それらの腫瘍の機能的情報を含んだ画像情報に機械学習を基本とした解析技術を融合させることによって、頭頸部癌患者の予後予測を高い正診率にて施行することが可能であることを示した。これらの技術によって頭頸部癌患者が有する個々の腫瘍に対して精度の高い治療効果予測、患者に対して予後予測が可能であることが示唆され、頭頸部癌患者のいわゆる個別化医療のための判断材料となりえることが示された。

Report

(4 results)
  • 2020 Annual Research Report   Final Research Report ( PDF )
  • 2019 Research-status Report
  • 2018 Research-status Report
  • Research Products

    (12 results)

All 2021 2020 2019 2018 Other

All Int'l Joint Research (2 results) Journal Article (8 results) (of which Int'l Joint Research: 5 results,  Peer Reviewed: 8 results,  Open Access: 3 results) Presentation (2 results) (of which Int'l Joint Research: 2 results)

  • [Int'l Joint Research] Boston Medical Center(米国)

    • Related Report
      2020 Annual Research Report
  • [Int'l Joint Research] Boston medical center(米国)

    • Related Report
      2019 Research-status Report
  • [Journal Article] Prediction of the Treatment Outcome using Machine Learning with FDG-PET Image-based Multiparametric Approach in Patients with Oral Cavity Squamous Cell Carcinoma2021

    • Author(s)
      Fujima N, Andreu-Arasa VC, Meibom SK, Mercier GA, Salama AR, Truong MT, Sakai O
    • Journal Title

      Clinical Radiology

      Volume: - Issue: 9 Pages: 711.e1-711.e7

    • DOI

      10.1016/j.crad.2021.03.017

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Deep learning analysis using FDG-PET to predict treatment outcome in patients with oral cavity squamous cell carcinoma2020

    • Author(s)
      Fujima N, Andreu-Arasa VC, Meibom SK, Mercier GA, Salama AR, Truong MT, Sakai O
    • Journal Title

      European Radiology

      Volume: 30 Issue: 11 Pages: 6322-6330

    • DOI

      10.1007/s00330-020-06982-8

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Prediction of the human papillomavirus status in patients with oropharyngeal squamous cell carcinoma by FDG-PET imaging dataset using deep learning analysis: A hypothesis-generating study.2020

    • Author(s)
      Fujima N, Andreu-Arasa VC, Meibom SK, Mercier GA, Truong MT, Sakai O.
    • Journal Title

      European Journal of Radiology

      Volume: 126 Pages: 108936-108936

    • DOI

      10.1016/j.ejrad.2020.108936

    • Related Report
      2019 Research-status Report
    • Peer Reviewed
  • [Journal Article] Machine-Learning-Based Prediction of Treatment Outcomes Using MR Imaging-Derived Quantitative Tumor Information in Patients with Sinonasal Squamous Cell Carcinomas: A Preliminary Study.2019

    • Author(s)
      Fujima N, Shimizu Y, Yoshida D, Kano S, Mizumachi T, Homma A, Yasuda K, Onimaru R, Sakai O, Kudo K, Shirato H
    • Journal Title

      Cancers

      Volume: 11 Issue: 6 Pages: 800-800

    • DOI

      10.3390/cancers11060800

    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Evaluation of non-Gaussian model-based diffusion-weighted imaging in oral squamous cell carcinoma: comparison with tumour functional information derived from positron-emission tomography.2019

    • Author(s)
      Shima T, Fujima N, Yamano S, Kudo K, Hirata K, Minowa K.
    • Journal Title

      Clinical Radiology

      Volume: 75 Issue: 5 Pages: 15-21

    • DOI

      10.1016/j.crad.2019.12.018

    • Related Report
      2019 Research-status Report
    • Peer Reviewed
  • [Journal Article] The utility of MRI histogram and texture analysis for the prediction of histological diagnosis in head and neck malignancies2019

    • Author(s)
      Fujima Noriyuki、Homma Akihiro、Harada Taisuke、Shimizu Yukie、Tha Khin Khin、Kano Satoshi、Mizumachi Takatsugu、Li Ruijiang、Kudo Kohsuke、Shirato Hiroki
    • Journal Title

      Cancer Imaging

      Volume: 19 Issue: 1 Pages: 5-5

    • DOI

      10.1186/s40644-019-0193-9

    • Related Report
      2018 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Semi-quantitative analysis of pre-treatment morphological and intratumoral characteristics using 18F-fluorodeoxyglucose positron-emission tomography as predictors of treatment outcome in nasal and paranasal squamous cell carcinoma2018

    • Author(s)
      Fujima Noriyuki、Hirata Kenji、Shiga Tohru、Yasuda Koichi、Onimaru Rikiya、Tsuchiya Kazuhiko、Kano Satoshi、Mizumachi Takatsugu、Homma Akihiro、Kudo Kohsuke、Shirato Hiroki
    • Journal Title

      Quantitative Imaging in Medicine and Surgery

      Volume: 8 Issue: 8 Pages: 788-795

    • DOI

      10.21037/qims.2018.09.09

    • Related Report
      2018 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Integrating quantitative morphological and intratumoural textural characteristics in FDG-PET for the prediction of prognosis in pharynx squamous cell carcinoma patients2018

    • Author(s)
      Fujima N.、Hirata K.、Shiga T.、Li R.、Yasuda K.、Onimaru R.、Tsuchiya K.、Kano S.、Mizumachi T.、Homma A.、Kudo K.、Shirato H.
    • Journal Title

      Clinical Radiology

      Volume: 73 Issue: 12 Pages: 1059.e1-1059.e8

    • DOI

      10.1016/j.crad.2018.08.011

    • Related Report
      2018 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Presentation] Prediction of the human papillomavirus status in patients with oropharyngeal squamous cell carcinoma by FDG-PET imaging dataset using deep learning analysis2019

    • Author(s)
      Fujima N,Andreu-Arasa VC,Meibom SK,Truong MT,Sakai O
    • Organizer
      Head and Neck Cancer Symposium 2019
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research
  • [Presentation] Diffusion weighted T2-mapping for the determination of tissue characteristics in patients with head and neck squamous cell carcinoma2018

    • Author(s)
      Noriyuki Fujima, Masami Yoneyama, Eunju Kim, Takuya Aoike, Suzuko Aoike, Kohsuke Kudo
    • Organizer
      ISMRM 26th Annual meeting
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research

URL: 

Published: 2018-04-23   Modified: 2022-01-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi