• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Investigation of the descending pain inhibitory system in the chronic pain using brain network analysis

Research Project

Project/Area Number 18K07730
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 52040:Radiological sciences-related
Research InstitutionJuntendo University

Principal Investigator

Wada Akihiko  順天堂大学, 医学部, 准教授 (90379686)

Co-Investigator(Kenkyū-buntansha) 堀 正明  順天堂大学, 医学部, 客員准教授 (40334867)
Project Period (FY) 2018-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2020: ¥390,000 (Direct Cost: ¥300,000、Indirect Cost: ¥90,000)
Fiscal Year 2019: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2018: ¥2,600,000 (Direct Cost: ¥2,000,000、Indirect Cost: ¥600,000)
Keywords慢性疼痛 / 舌痛症 / 脳ネットワーク / MRI / グラフ理論解析 / 機械学習 / 疼痛抑制系 / 口腔内灼熱症候群 / 拡散テンソルMR画像 / 脳内ネットワーク / 脳MRI / 拡散テンソル画像 / 疼痛関連脳内ネットワーク / グラフニューラルネットワーク / コネクトーム / 拡散テンソルMRI / 神経路 / 下行性疼痛抑制系
Outline of Final Research Achievements

In this study, brain networks were visualized by diffusion tensor analysis of brain MRI in chronic pain patients and healthy subjects and compared. Graph theory brain network analysis revealed differences in network indices in some pain-related regions in the cerebral hemispheres between the two groups. However, changes in the descending pain suppression system were not clearly detected, and the study did not achieve its initial goal.
On the other hand, in an investigation of the different disease types, a decrease in network metrics was observed in some pain-related regions, such as the cingulate gyrus, amygdala, and parietal lobe, in the group of patients with glossodynia, which was different from that in the other disease types. This finding may provide clues to elucidate the pathophysiology of tongue pain, especially in chronic pain.

Academic Significance and Societal Importance of the Research Achievements

慢性疼痛の病態解明に脳内の疼痛制御ネットワークの探求と理解が進められている。本研究の学術的意義は拡散テンソルMR画像と機械学習を応用した新しいアプローチで検討を行った点にある。本手法のような客観的な評価指標を臨床医療にフィードバックしていくことが、疼痛制御メカニズム解明に貢献できると期待される。
今回の検討内では当初期待した明確な結果は得られなかったものの、舌痛症などの一部疾患で見出されたネットワーク変化は、慢性疼痛の病態解明の手がかりとなりうる。本研究での知見を活かし、慢性疼痛の診断や治療法選択を支援するツール開発につなげることで、罹患患者の苦痛の客観的理解、よりよい治療への寄与が期待できる。

Report

(7 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • Research Products

    (2 results)

All 2023

All Journal Article (1 results) (of which Peer Reviewed: 1 results,  Open Access: 1 results) Presentation (1 results)

  • [Journal Article] Automation of a Rule-based Workflow to Estimate Age from Brain MR Imaging of Infants and Children Up to 2 Years Old Using Stacked Deep Learning2023

    • Author(s)
      Wada Akihiko、Saito Yuya、Fujita Shohei、Irie Ryusuke、Akashi Toshiaki、Sano Katsuhiro、Kato Shinpei、Ikenouchi Yutaka、Hagiwara Akifumi、Sato Kanako、Tomizawa Nobuo、Hayakawa Yayoi、Kikuta Junko、Kamagata Koji、Suzuki Michimasa、Hori Masaaki、Nakanishi Atsushi、Aoki Shigeki
    • Journal Title

      Magnetic Resonance in Medical Sciences

      Volume: 22 Issue: 1 Pages: 57-66

    • DOI

      10.2463/mrms.mp.2021-0068

    • NAID

      130008127687

    • ISSN
      1347-3182, 1880-2206
    • Related Report
      2022 Research-status Report
    • Peer Reviewed / Open Access
  • [Presentation] 脳内ネットワーク解析による歯科心身症の特徴抽出と病型識別の試み2023

    • Author(s)
      和田昭彦
    • Organizer
      第51回日本磁気共鳴医学会大会
    • Related Report
      2023 Annual Research Report

URL: 

Published: 2018-04-23   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi