• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Prediction of FFR from coronary MRA using deep learning

Research Project

Project/Area Number 18K07749
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 52040:Radiological sciences-related
Research InstitutionMie University

Principal Investigator

Sakuma Hajime  三重大学, 医学系研究科, 教授 (60205797)

Co-Investigator(Kenkyū-buntansha) 石田 正樹  三重大学, 医学部附属病院, 講師 (10456741)
中山 良平  立命館大学, 理工学部, 教授 (20402688)
Project Period (FY) 2018-04-01 – 2022-03-31
Project Status Completed (Fiscal Year 2021)
Budget Amount *help
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2020: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2019: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2018: ¥2,340,000 (Direct Cost: ¥1,800,000、Indirect Cost: ¥540,000)
Keywords冠動脈疾患 / 冠動脈MRA / 人工知能 / 畳み込みニューラルネットワーク / 冠動脈造影検査 / 冠動脈血流予備量比
Outline of Final Research Achievements

In this study, the authors optimized a speedup technique for coronary MRA imaging in healthy volunteers and achieve high image quality of coronary MRA using convolutional neural network (CNN) -based image processing techniques. The artificial intelligence-based image processing techniques for diagnosing the stenosis on coronary MRA was investigated using invasive coronary angiography (ICA) as a reference. Preliminary tests showed high diagnostic performance, but there is room for optimization and further research is planned.

Academic Significance and Societal Importance of the Research Achievements

本研究では、冠動脈MRAの撮影高速化および高画質化が達成されたが、これは、非侵襲的冠動脈MRA検査の質の向上に寄与し、診断能向上に貢献できることが期待される。また、侵襲的冠動脈造影検査(ICA)で計測される冠動脈狭窄度を、放射線被曝や負荷薬剤投与を必要としない冠動脈MRA画像データから画像処理技術を用い非侵襲的に予測するアルゴリズムの最適化を検討したが、高い診断能を得るまでもう一歩のところまで到達しており、開発が完了すれば医療への波及効果は非常に高いと考えられる。

Report

(5 results)
  • 2021 Annual Research Report   Final Research Report ( PDF )
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • Research Products

    (8 results)

All 2020 2019 2018

All Journal Article (1 results) (of which Peer Reviewed: 1 results) Presentation (7 results) (of which Int'l Joint Research: 3 results)

  • [Journal Article] Improving Image Resolution of Whole-Heart Coronary MRA Using Convolutional Neural Network.2020

    • Author(s)
      Hiroki Kobayashi, Ryohei Nakayama, Akiyoshi Hizukuri, Masaki Ishida, Kakuya Kitagawa, Hajime Sakuma
    • Journal Title

      J Digit Imaging

      Volume: 33 Issue: 2 Pages: 497-503

    • DOI

      10.1007/s10278-019-00264-6

    • Related Report
      2019 Research-status Report
    • Peer Reviewed
  • [Presentation] ベイズ最適化による医療画像応用CNN(Convolutional Neural Network)のハイパーパラメータの決定2019

    • Author(s)
      田中滉大,中山良平,檜作彰良,市川泰祟,石田正樹,北川覚也,佐久間肇
    • Organizer
      第18回情報科学技術フォーラム
    • Related Report
      2019 Research-status Report
  • [Presentation] 深層学習によるシネMRI(Magnetic Resonance Imaging)画像の高フレームレート化2019

    • Author(s)
      高瀬唯人,中山良平,檜作彰良,市川泰崇,石田正樹,北川覚也,佐久間 肇
    • Organizer
      第18回情報科学技術フォーラム
    • Related Report
      2019 Research-status Report
  • [Presentation] Whole-heart coronary MRA at 3.0T: Comparison between conventional method and new acceleration technique by compressed SENSE.2018

    • Author(s)
      Shinichi Takase, Masaki Ishida, Yoshitaka Goto, Wakana Makino, Haruno Sakuma, Makoto Obara, Tsunehiro Yamahata, Katsuhiro Inoue, Kakuya Kitagawa, Hajime Sakuma
    • Organizer
      ISMRM2018
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research
  • [Presentation] 3.0T冠動脈MRA:Compressed SENSE法により撮像はどこまで加速できるか?2018

    • Author(s)
      内田雄一郎, 石田正樹, 高瀬伸一, 後藤義崇, 磯嶋志保, 牧野和香奈, 佐久間絵, 小原真, 山畑経博, 佐久間肇
    • Organizer
      第87回 日本心臓放射線研究会
    • Related Report
      2018 Research-status Report
  • [Presentation] Optimization Method of Hyper-Parameters in Convolutional Neural Network for Medical Image Application2018

    • Author(s)
      Kodai Tanaka, Akiyoshi Hizukuri, Ryohei Nakayama, Masaki Ishida, Kakuya Kitagawa, Hajime Sakuma, Yasutaka Ichikawa, Hiroki Kobayashi, Yuito Takase, Yugo Onishi
    • Organizer
      Radiological Society of North America 2018
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research
  • [Presentation] 深層学習を用いた冠動脈MRAの高解像度化2018

    • Author(s)
      小林大輝,中山良平,檜作彰良,石田正樹,北川覚也,佐久間肇
    • Organizer
      第182回 医用画像情報学会秋季
    • Related Report
      2018 Research-status Report
  • [Presentation] Improving image resolution of whole heart coronary magnetic resonance angiography using 3-dimentional super-resolution technique2018

    • Author(s)
      S. Takahashi, R. Nakayama, M. Asao, A. Hizukuri, M. Ishida, K. Kitagawa, H. Sakuma
    • Organizer
      Computer asisted radiology and surgery (CARS2018)
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research

URL: 

Published: 2018-04-23   Modified: 2023-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi