• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Development of skin disease classifier using artificial intelligence

Research Project

Project/Area Number 18K08290
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 53050:Dermatology-related
Research InstitutionUniversity of Tsukuba

Principal Investigator

Fujisawa Yasuhiro  筑波大学, 医学医療系, 准教授 (70550193)

Project Period (FY) 2018-04-01 – 2021-03-31
Project Status Completed (Fiscal Year 2020)
Budget Amount *help
¥4,550,000 (Direct Cost: ¥3,500,000、Indirect Cost: ¥1,050,000)
Fiscal Year 2020: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2019: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2018: ¥2,210,000 (Direct Cost: ¥1,700,000、Indirect Cost: ¥510,000)
Keywords皮膚腫瘍 / 人工知能 / 分類 / ディープラーニング / 畳み込みニューラルネットワーク / 画像分類
Outline of Final Research Achievements

We trained AI using 4,800 out of 6,000 tumor images including benign and malignant which were retrospectively collected at University of Tsukuba, Dermatology division. The rest 1,200 images were used for the testing AI to calculate the accuracy of AI. Next, we randomly chose 140 images for the test dataset and compared the efficacy with board-certified dermatologists. As a result, AI classified images 93.4% accuracy whereas the board certified dermatologists achieved 85.3%, which was statistically significant different. Our study showed that the AI could classify tumor images more accurately than board-certified dermatologists.

Academic Significance and Societal Importance of the Research Achievements

本研究にて従来必要であるとされた1分類あたり1000枚という教師画像の数が,実際にはより少ない数(本研究では14クラスの分類で4800枚の教師画像)でも充分な精度で疾患の写真を分類できることを明らかにした.これは稀少な腫瘍が多い皮膚腫瘍の分野では多くの教師画像が集められないため,今後のAI皮膚腫瘍分類システムの構築にあたり大きなアドバンテージとなる.また,今回研究に使用した皮膚腫瘍だけでなくその他の分野にも応用が可能な技術であり,皮膚科に留まらずその他の分野においてもその開発の役に立つと思われる.現在はこのシステムを医療機器として使えるように研究開発を進めている.

Report

(4 results)
  • 2020 Annual Research Report   Final Research Report ( PDF )
  • 2019 Research-status Report
  • 2018 Research-status Report
  • Research Products

    (8 results)

All 2019

All Journal Article (5 results) (of which Peer Reviewed: 2 results) Presentation (3 results) (of which Int'l Joint Research: 3 results,  Invited: 2 results)

  • [Journal Article] Deep‐learning‐based, computer‐aided classifier developed with a small dataset of clinical images surpasses board‐certified dermatologists in skin tumour diagnosis2019

    • Author(s)
      Fujisawa Y.、Otomo Y.、Ogata Y.、Nakamura Y.、Fujita R.、Ishitsuka Y.、Watanabe R.、Okiyama N.、Ohara K.、Fujimoto M.
    • Journal Title

      British Journal of Dermatology

      Volume: 180 Issue: 2 Pages: 373-381

    • DOI

      10.1111/bjd.16924

    • Related Report
      2019 Research-status Report
    • Peer Reviewed
  • [Journal Article] The Possibility of Deep Learning-Based, Computer-Aided Skin Tumor Classifiers2019

    • Author(s)
      Fujisawa Yasuhiro、Inoue Sae、Nakamura Yoshiyuki
    • Journal Title

      Frontiers in Medicine

      Volume: 6 Pages: 00-00

    • DOI

      10.3389/fmed.2019.00191

    • NAID

      120007165449

    • Related Report
      2019 Research-status Report
    • Peer Reviewed
  • [Journal Article] Melanoma and Non-Melanoma Skin Cancersメラノーマ・皮膚癌 人工知能による皮膚腫瘍の診断補助システム2019

    • Author(s)
      藤澤 康弘
    • Journal Title

      癌と化学療法

      Volume: 46 Pages: 637-640

    • Related Report
      2019 Research-status Report
  • [Journal Article] 人工知能による皮膚腫瘍診断補助システムの開発2019

    • Author(s)
      藤澤 康弘,藤本 学,大友 雄造,藤田 亮
    • Journal Title

      画像ラボ

      Volume: 30 Pages: 30-35

    • Related Report
      2019 Research-status Report
  • [Journal Article] 新しい検査法と診断法 人工知能(AI)による悪性腫瘍の診断2019

    • Author(s)
      藤澤 康弘, 藤本 学
    • Journal Title

      臨床皮膚科

      Volume: 73 Pages: 64-68

    • Related Report
      2019 Research-status Report
  • [Presentation] Can deep-learning-based, computer-aided classifier surpass board-certified dermatologists in skin tumour diagnosis?2019

    • Author(s)
      Fujisawa Y
    • Organizer
      The 34th congress of Asia-Pacific Academy of Ophthalmology
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Computer-aided classifier with a deep convolutional neural network surpasses board-certified dermatologists in skin tumor diagnosis2019

    • Author(s)
      Fujisawa Y
    • Organizer
      15th European Association of Dermato-Oncology
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research
  • [Presentation] Can deep-learning-based, computer-aided classifier surpass board-certified dermatologistsin skin tumour diagnosis?2019

    • Author(s)
      Fujisawa Y
    • Organizer
      The 34th congress of Asia-Pacific Academy of Ophthalmology
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited

URL: 

Published: 2018-04-23   Modified: 2022-01-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi