Identification of potential serum biomarkers for the prediction of chemotherapy effect in breast cancer patients
Project/Area Number |
18K08602
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 55010:General surgery and pediatric surgery-related
|
Research Institution | Teikyo University |
Principal Investigator |
|
Co-Investigator(Kenkyū-buntansha) |
砂村 眞琴 東京医科大学, 医学部, 兼任教授 (10201584)
杉本 昌弘 東京医科大学, 医学部, 教授 (30458963)
|
Project Period (FY) |
2018-04-01 – 2023-03-31
|
Project Status |
Completed (Fiscal Year 2022)
|
Budget Amount *help |
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2020: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2019: ¥1,820,000 (Direct Cost: ¥1,400,000、Indirect Cost: ¥420,000)
Fiscal Year 2018: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
|
Keywords | 乳癌 / 血液 / 診断 / メタボローム / マルチオミックス |
Outline of Final Research Achievements |
We conducted comprehensive metabolite analysis of serum samples obtained from 66 breast cancer patients who had neoadjuvant chemotherapy, using capillary electrophoresis time-of-flight-mass spectrometry (CE-TOF-MS). 16 luminal, 33 HER2, and 17 tiple negative breast cancer were included. Pathological complete response (pCR) was found in 30 cases. One metabolite, 3-Indoxylsulfate was tended to be lower concentrations in pCR patients compared with non-pCR patients.
|
Academic Significance and Societal Importance of the Research Achievements |
メタボローム解析によって得られた効果予測マーカーを臨床情報と合わせて解析することにより、定量的かつ客観的な指標で癌を特徴化することができれば、化学療法の個別化や、さらには予後予測などへの活用も期待できる。医療の標準化で陥りやすい過剰医療を防ぎ、個別医療化に向けたマーカーを同時に探す研究例は、学術的な成果だけでなく、医療経済的なインパクトが高い。
|
Report
(6 results)
Research Products
(12 results)
-
[Journal Article] Breast cancer survival among Japanese individuals and US residents of Japanese and other origins: a comparative registry-based study.2020
Author(s)
1.Ogiya R, Niikura N, Kumamaru H, Takeuchi Y, Okamura T, Kinoshita T, Aogi K, Anan K, Iijima K, Ishida T, Iwamoto T, Kawai M, Kojima Y, Sakatani T, Sagara Y, Hayashi N, Masuoka H, Yoshida M, Miyata H, Tsuda H, Imoto S, Jinno H.
-
Journal Title
Breast cancer research and treatment
Volume: 184
Issue: 2
Pages: 585-596
DOI
Related Report
Peer Reviewed / Open Access
-
-
-
-
-
-
-
-
-
-
-
[Presentation] Machine learning methods with salivary metabolomics for breast cancer detection.2019
Author(s)
129.T Murata, T Yanagisawa, T Kurihara, M Kaneko, S Ota, A Enomoto, M Tomita, M M Sugimoto, M Sunamura, T Hayashida, H Jinno, Y Kitagawa.
Organizer
2019 ASCO Annual Meeting
Related Report
Int'l Joint Research