Project/Area Number |
18K09679
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 57050:Prosthodontics-related
|
Research Institution | Niigata University |
Principal Investigator |
AKIBA YOSUKE 新潟大学, 医歯学総合病院, 講師 (70547512)
|
Co-Investigator(Kenkyū-buntansha) |
照沼 美穂 新潟大学, 医歯学系, 教授 (50615739)
水野 潤 早稲田大学, ナノ・ライフ創新研究機構, 上級研究員(研究院教授) (60386737)
泉 健次 新潟大学, 医歯学系, 教授 (80242436)
|
Project Period (FY) |
2018-04-01 – 2021-03-31
|
Project Status |
Completed (Fiscal Year 2020)
|
Budget Amount *help |
¥4,550,000 (Direct Cost: ¥3,500,000、Indirect Cost: ¥1,050,000)
Fiscal Year 2020: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2019: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2018: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
|
Keywords | インプラント / ナノ構造 / 組織制御 / 細胞制御 / デンタルインプラント / 生体材料 / チタン / 規格化ナノ構造 / オッセオインテグレーション / タンパク質 / ナノチタン構造 / 骨形成 / 蛋白質探索 |
Outline of Final Research Achievements |
In this study, we fabricated standardized and controlled periodic nanopatterns with nanosized surface roughness on titanium substrates and investigated their influence on bone marrow stromal cells. Cell proliferation assays revealed that the bare substrate with a 1.7 nm surface roughness showed lower hydrophilicity but higher proliferation ability than that with a 0.6 nm surface roughness. Further, with the latter substrate, directional cell growth was observed for line and groove patterns with a width of 100 nm and a height of 50 or 100 nm, but not for those with heights of 10 or 25 nm. With the smooth substrate, time-lapse microscopic analyses showed that more than 80% of the bone marrow cells on the line and groove pattern with a height of 100 nm grew and divided along the lines. As the nanosized grain structure controls the cell proliferation rate and the nanosized line and groove structure controls cell migration, division, and growth orientation.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究により微細構造による細胞機能、組織形成が制御可能になれば、創傷治癒、再生などの研究分野に薬剤や生理活性物質を使用しない生体活性技術を提供することが可能になり、構造生体制御学研究に関する学術領域を創設できる可能性がある。規格化ナノチタン構造による周辺細胞・組織制御技術により、軟組織封鎖性向上、細菌感染抑制、歯根膜形性などの機能的付加価値を持ったインプラント、生体材料の開発が可能になる。
|