• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Understanding and developing deep learning as estimation procedures of the high-dimensional parameter

Research Project

Project/Area Number 18K11208
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 60030:Statistical science-related
Research InstitutionThe Institute of Statistical Mathematics

Principal Investigator

Yanagimoto Takemi  統計数理研究所, -, 名誉教授 (40000195)

Project Period (FY) 2018-04-01 – 2021-03-31
Project Status Completed (Fiscal Year 2020)
Budget Amount *help
¥3,640,000 (Direct Cost: ¥2,800,000、Indirect Cost: ¥840,000)
Fiscal Year 2020: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2019: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2018: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
KeywordsActivation function / LRT statistic / Regression analysis / 母数推定 / Ramp関数 / ベイズモデル / Wasserstein距離 / 1対数尤度比 / 2Ramp関数 / 3Wasserstein距離 / 人の認識 / データの育成 / 活性化関数 / 推定量のリスク
Outline of Final Research Achievements

The success of the deep learning indicates its possible improvements in various ways. Improvements through the loss function and Bayesian models based on the likelihood ratio statistics are primary targets in the present study. The selection of activation functions, such as the softmax and the ReLU functions, is regarded as that of inferential procedures of parameters. The techniques of the estimation of a high-dimensional parameter are applied.
Two approaches are employed. One is to generalize activation functions by regarding them as ramp functions. The understanding of the ramp function varies with different disciplines, such as the spline function and the machine learning. We add a view of the heaviness of tail of the distribution. Another approach pertains the loss function. The loss and the risk are the keys in the deep learning, since it is broken down into the estimation problem of the multinomial distribution.

Academic Significance and Societal Importance of the Research Achievements

データサイエンスへの期待が高まる中で、新し手法としての深層学習の実用性が認められた。その適用範囲は従来の統計手法が及ばない領域を広く含んでいる。また、その基本的構造は従来の回帰分析の自然な拡張である。その意味でも多様な研究が求められる研究テーマである。その構造の解明と理解を深める研究が求められている

Report

(4 results)
  • 2020 Annual Research Report   Final Research Report ( PDF )
  • 2019 Research-status Report
  • 2018 Research-status Report
  • Research Products

    (18 results)

All 2021 2020 2019 2018

All Journal Article (3 results) (of which Peer Reviewed: 2 results,  Open Access: 3 results) Presentation (15 results) (of which Int'l Joint Research: 5 results,  Invited: 2 results)

  • [Journal Article] Bayesian estimator of multiple Poisson means assuming two different priors2021

    • Author(s)
      Ogura, T. and Yanagimoto, T.
    • Journal Title

      Communication In Statistics - Simulation and. Computation

      Volume: 0 Issue: 3 Pages: 0-0

    • DOI

      10.1080/03610918.2020.1861465

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] A characterization of Jeffreys’ prior with its implications to likelihood inference2020

    • Author(s)
      Yanagimoto, T. and Ohnishi, T.
    • Journal Title

      Pioneering Works on Distribution Theory:In Honor of Masaaki Sibuya

      Volume: 1 Pages: 103-121

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Laplace分布の再評価 : ベイズ法と活性化関数から2020

    • Author(s)
      柳本 武美
    • Journal Title

      数理解析研究所講究録

      Volume: No 2157 Pages: 83-96

    • Related Report
      2020 Annual Research Report
    • Open Access
  • [Presentation] von Mises 分布における自然母数の事後平均のバイアスについて2020

    • Author(s)
      作村 建紀 柳本 武美
    • Organizer
      統計関連学会連合大会
    • Related Report
      2020 Annual Research Report
  • [Presentation] Zeta事前分布を用いた多項分布におけるパラメータ推定2020

    • Author(s)
      小椋 透 柳本 武美
    • Organizer
      統計関連学会連合大会
    • Related Report
      2020 Annual Research Report
  • [Presentation] ベイズ型対数尤度に基づくモデルの信用集合2020

    • Author(s)
      柳本 武美
    • Organizer
      科研費シンポジウム「大規模複雑データの理論と方法論」
    • Related Report
      2020 Annual Research Report
  • [Presentation] Laplace 分布の再評価:ベイズ法と活性化関数から2020

    • Author(s)
      柳本 武美
    • Organizer
      RIMS共同研究
    • Related Report
      2019 Research-status Report
  • [Presentation] Use of two different priors in an empirical Bayes estimator: Case of multiple Poisson means2019

    • Author(s)
      T. Yanagimoto and T. Ogura
    • Organizer
      4th EAC-ISBA
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Innovative conjugate analysis of the unknown dimensional multinomial probabilities2019

    • Author(s)
      T. Ogura and T. Yanagimoto
    • Organizer
      4th EAC-ISBA
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research
  • [Presentation] Properties of the ramp function as an activation function in deep neural network2019

    • Author(s)
      T. Yanagimoto and K. Ohkusa
    • Organizer
      DSSV2019
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research
  • [Presentation] DNN と RCT の共通点に見る統計的推測の要点2019

    • Author(s)
      柳本 武美
    • Organizer
      2019年度統計関連学会連合大会
    • Related Report
      2019 Research-status Report
  • [Presentation] On estimators of multinomial parameters using bayesian approach2019

    • Author(s)
      K. Tahata, R. Takami and T. Yanagimoto
    • Organizer
      Bayes on the Beach
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research
  • [Presentation] ベイズモデルの母数:事前分布と estimand2019

    • Author(s)
      柳本 武美
    • Organizer
      科研費シンポ秋田
    • Related Report
      2019 Research-status Report
  • [Presentation] Conjugate analysis under Jeffreys' prior with its implications to likelihood inference2019

    • Author(s)
      Yanagimoto, T. * and Ohnishi, T. (Kyushu University)
    • Organizer
      Pioneering Workshop on Extreme Value and Distribution Theories in honor of Prof. Sibuya
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] 活性化関数と回帰関数の性能と人の認知からの評価2018

    • Author(s)
      柳本武美
    • Organizer
      2018年度統計関連学会連合大会
    • Related Report
      2018 Research-status Report
  • [Presentation] 複数のポアソン分布の平均値の経験ベイズ推定における対数変換を用いた工夫2018

    • Author(s)
      小椋透 (三重大学)* 柳本武美
    • Organizer
      2018年度統計関連学会連合大会
    • Related Report
      2018 Research-status Report
  • [Presentation] 多項分布における自然母数の事後平均2018

    • Author(s)
      高見遼太(東京理科大学),柳本武美, 田畑耕治(東京理科大学)
    • Organizer
      2018 年度日本分類学会シンポジウム
    • Related Report
      2018 Research-status Report
  • [Presentation] RCT と DNN が医療水準の向上を駆動する2018

    • Author(s)
      柳本武美
    • Organizer
      科研費研究集会「多変量データ解析法における理論と応用」
    • Related Report
      2018 Research-status Report

URL: 

Published: 2018-04-23   Modified: 2022-01-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi