Fundamental Research of Graph Signal Processing and Its Applications to Big Data
Project/Area Number |
18K11260
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 60060:Information network-related
|
Research Institution | The University of Electro-Communications |
Principal Investigator |
ZHANG XI 電気通信大学, 大学院情報理工学研究科, 教授 (40251706)
|
Project Period (FY) |
2018-04-01 – 2022-03-31
|
Project Status |
Completed (Fiscal Year 2021)
|
Budget Amount *help |
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2020: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2019: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2018: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
|
Keywords | グラフ / 信号処理 / 画像処理 / ビッグデータ / フィルタバンク / ウェーブレット / グラフ信号処理 / グラフウェーブレットフィルタバンク / グラフ作成法 / サンプリングパターン / 画像圧縮 / ノイズ除去 / 信号処理理論 / グラフフィルタ設計 / 信号処理手法 / グラフウェーブレット |
Outline of Final Research Achievements |
In this study, we proposed a method for designing two-channel graph filter banks by polynomial transformation and factorization of odd-order and even-symmetrical linear phase FIR filters. The amplitude responses of the analysis and synthesis lowpass filters were converted from the frequency domain to the graph spectrum domain by using polynomial transformation. At this time, since there are parts that cannot be expressed by polynomials in the analysis and synthesis lowpass filters, we replaced them with new polynomials and designed graph filters. Then, the condition of the polynomials for the filter bank to be perfectly reconstructed was derived. We also applied the graph signal processing method to image processing. Each pixel of the image was regarded as a vertex, the pixels were connected by edges, various patterns of graphs were created, and performance surveys and comparisons were performed.
|
Academic Significance and Societal Importance of the Research Achievements |
周知のように,ネットワークは重み付きグラフによって表現できる.グラフは,データの一般的な表現形式であり,その幾何的構造を記述するために有用である.ソーシャルネットワーク、センサーネットワーク、ニューラルネットワークなどのような応用では,高次元データは,自然に重み付きグラフの頂点上に存在する.様々なネットワークから集められた膨大な量のデータから有用な情報を抽出する必要があるため,有用な情報を効率よく抽出するための革新的なアプローチが必要不可欠である.グラフ信号処理は,様々なグラフ信号に対し効率的な保存・伝送・解析の手段を提供する.具体的には,フィルタリング,ノイズ除去や圧縮などの応用がある.
|
Report
(5 results)
Research Products
(17 results)