• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Development of 1-chip CNN real-time processor for semantic segmentation, distance estimation, and motion estimation

Research Project

Project/Area Number 18K11350
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 61010:Perceptual information processing-related
Research InstitutionKanazawa University

Principal Investigator

Miyama Masayuki  金沢大学, 電子情報通信学系, 准教授 (30324106)

Project Period (FY) 2018-04-01 – 2021-03-31
Project Status Completed (Fiscal Year 2020)
Budget Amount *help
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2020: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2019: ¥2,210,000 (Direct Cost: ¥1,700,000、Indirect Cost: ¥510,000)
Fiscal Year 2018: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
KeywordsCNN / 意味分割 / フロー推定 / SLAM / FPGA
Outline of Final Research Achievements

We devised a convolutional neural network (CNN) that simultaneously estimates the contour of an object and the distance (parallax) in order to recognize the surrounding environment from an image, and implemented it on an FPGA (Field Programmable Gate Array). Contour detection is transformed to a regression problem that estimates the distance from the object boundary instead of the conventional binary classification of contour and non-contour, enabling multitask learning with parallax estimation. Then, we devised a CNN with full weight sharing that performs two estimations at the same time. This was quantized to 3 bits, but the decrease in accuracy was slight. As a result of FPGA implementation, it operates at 250 MHz and has a throughput of 134 fps for an image of 480 x 320 pixels.

Academic Significance and Societal Importance of the Research Achievements

ステレオ画像を用いた一般物体輪郭検出と視差推定の同時学習とマルチタスクCNNはこれまでに報告されていない。これを3ビットまで量子化したCNNの回路設計やFPGA実装も行われていない。このCNN回路は畳み込みの重みを変更すれば画像を画素単位でカテゴリ分類する意味的分割も実行できる。開発したFPGAは解像度480×320画素の画像に対してスループット134 fpsで動作し、自律ロボットのSLAM(自己位置推定と地図作成の同時実行)や周囲環境認識に応用できる。

Report

(4 results)
  • 2020 Annual Research Report   Final Research Report ( PDF )
  • 2019 Research-status Report
  • 2018 Research-status Report
  • Research Products

    (4 results)

All 2021 2020 2019

All Journal Article (1 results) (of which Peer Reviewed: 1 results,  Open Access: 1 results) Presentation (3 results) (of which Int'l Joint Research: 2 results)

  • [Journal Article] FPGA Implementation of 3-bit Quantized CNN for Semantic Segmentation2021

    • Author(s)
      Miyama Masayuki
    • Journal Title

      Journal of Physics: Conference Series

      Volume: 1729 Issue: 1 Pages: 012004-012004

    • DOI

      10.1088/1742-6596/1729/1/012004

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed / Open Access
  • [Presentation] FPGA Implementation of 3-bit Quantized CNN for Semantic Segmentation2020

    • Author(s)
      Masayuki Miyama
    • Organizer
      The 4th International Conference on Circuits, Systems and Devices
    • Related Report
      2020 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Convolutional Network for Generic Object Contour Detection with Stereo Vision2019

    • Author(s)
      Miyama Masayuki
    • Organizer
      2019 2nd International Conference on Information Hiding and Image Processing
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research
  • [Presentation] 意味分割用DNNの低ビット化2019

    • Author(s)
      西沢 拓未, 深山 正幸
    • Organizer
      2019年度電気・情報関係学会北陸支部連合大会予稿集
    • Related Report
      2019 Research-status Report

URL: 

Published: 2018-04-23   Modified: 2022-01-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi