• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Study on the application of machine learning technologies to image compression coding

Research Project

Project/Area Number 18K11360
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 61010:Perceptual information processing-related
Research InstitutionChiba Institute of Technology

Principal Investigator

Yashima Yoshiyuki  千葉工業大学, 情報科学部, 教授 (60550689)

Project Period (FY) 2018-04-01 – 2021-03-31
Project Status Completed (Fiscal Year 2020)
Budget Amount *help
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2020: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2019: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2018: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
Keywords画像符号化 / 機械学習 / 深層学習 / ディープラーニング / 画像認識 / フレーム間予測 / 画質推定
Outline of Final Research Achievements

In this research, we approached new technologies that combine machine learning and image compression coding from various perspectives. First, we proposed a new interframe prediction technology using DNN (Deep Neural Network) and a new image expression technology based on mult-class dictionaries designed by machine learning. By many experiments, it was clarified that they have better coding performance than standard image coding methods such as HEVC. We also proposed an image quality estimation method using the intermediate layer outputs of DNN, and showed that it can be used for performance evaluation of not only coding noise but also new compression methods such as texture synthesis. Furthermore, it was clarified that the singular value decomposition of the fully connected layers and the adaptive quantization for the convolution layers in DNN enable a significant reduction in the amount of information of DNN itself with almost no decrease in image recognition accuracy.

Academic Significance and Societal Importance of the Research Achievements

「画像圧縮符号化」が基本的には原画忠実性を評価基準とした技術であるのに対し,深層学習に代表される「機械学習による画像処理」は感性的な同一性や自然さに重点を置いた評価基準に基づく処理であることから,2つの技術は互いに相容れないのではないかと考えられ,機械学習を画像通信のキーテクノロジである画像符号化へ応用するアプローチは研究開始当初は本格的に行われていなかった.本研究によって,予測・変換・画質推定・深層学習のモデル圧縮など,画像符号化と機械学習が補い合うことのできる様々な要素の存在が明らかになり,今後の該分野の発展を見据えた指針を示すことができた.

Report

(4 results)
  • 2020 Annual Research Report   Final Research Report ( PDF )
  • 2019 Research-status Report
  • 2018 Research-status Report
  • Research Products

    (21 results)

All 2021 2020 2019 2018 Other

All Journal Article (5 results) (of which Peer Reviewed: 5 results) Presentation (15 results) (of which Int'l Joint Research: 5 results) Remarks (1 results)

  • [Journal Article] Data Compression for DNN Weighting Coefficients using Layer Adaptive Quantization2021

    • Author(s)
      Ryota Aogaki, Yoshiyuki Yashima
    • Journal Title

      Proceedings of SPIE

      Volume: vol.11766 Pages: 23-23

    • DOI

      10.1117/12.2590667

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed
  • [Journal Article] <b>Multi-Class Dictionary Design Algorithm Based on Iterative Class Update K-SVD for Image Compression</b>2020

    • Author(s)
      Ji Wang, Yukihiro Bandoh, Atsushi Shimizu, Yoshiyuki Yashima
    • Journal Title

      IIEEJ Transactions on Image Electronics and Visual Computing

      Volume: 8 Issue: 1 Pages: 44-57

    • DOI

      10.11371/tievciieej.8.1_44

    • NAID

      130008021951

    • ISSN
      2188-1898, 2188-1901, 2188-191X
    • Year and Date
      2020-06-15
    • Related Report
      2020 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Trends and New Prospects of Video Coding Researches towards the IoT Era2019

    • Author(s)
      八島由幸,高村誠之
    • Journal Title

      IEICE Communications Society Magazine

      Volume: 13 Issue: 1 Pages: 43-52

    • DOI

      10.1587/bplus.13.43

    • NAID

      130007658195

    • ISSN
      2186-0661
    • Year and Date
      2019-06-01
    • Related Report
      2019 Research-status Report
    • Peer Reviewed
  • [Journal Article] An efficient entropy coding of sparse coefficients based on sparsity adaptation and atom reordering for image compression2019

    • Author(s)
      Ji Wang, Yoshiyuki Yashima
    • Journal Title

      Journal of IIEEJ Transactions on Image Electronics and Visual Computing

      Volume: Vol.7 Pages: 128-141

    • NAID

      130008012587

    • Related Report
      2019 Research-status Report
    • Peer Reviewed
  • [Journal Article] 深層学習を用いたフレーム間外挿予測とH.265/HEVCへの適用2019

    • Author(s)
      神保悟,王冀,八島由幸
    • Journal Title

      電子情報通信学会論文誌D

      Volume: Vol.J102-D Pages: 651-654

    • Related Report
      2019 Research-status Report
    • Peer Reviewed
  • [Presentation] Data Compression for DNN Weighting Coefficients using Layer Adaptive Quantization2021

    • Author(s)
      Ryota Aogaki, Yoshiyuki Yashima
    • Organizer
      International Workshop on Advanced Imaging Technology (IWAIT) 2021
    • Related Report
      2020 Annual Research Report
    • Int'l Joint Research
  • [Presentation] DNNの層別重み係数量子化と画像認識精度との関係2020

    • Author(s)
      青柿亮太,八島由幸
    • Organizer
      電子情報通信学会/情報処理学会,第19回情報科学技術フォーラム(FIT2020)
    • Related Report
      2020 Annual Research Report
  • [Presentation] DNN中間層特徴マップを用いた合成テクスチャ画像の画質推定2020

    • Author(s)
      荒井雅司,八島由幸
    • Organizer
      電子情報通信学会/情報処理学会,第19回情報科学技術フォーラム(FIT2020)
    • Related Report
      2020 Annual Research Report
  • [Presentation] LSTMによるJPEG/HEVCビットストリームの画像認識精度に関する考察2020

    • Author(s)
      冨田直生,八島由幸
    • Organizer
      電子情報通信学会/情報処理学会,第19回情報科学技術フォーラム(FIT2020)
    • Related Report
      2020 Annual Research Report
  • [Presentation] 複数参照フレームからのDNNベース幾何変換行列推定を用いたフレーム間予測2020

    • Author(s)
      姜思徳,八島由幸
    • Organizer
      電子情報通信学会/情報処理学会,第19回情報科学技術フォーラム(FIT2020)
    • Related Report
      2020 Annual Research Report
  • [Presentation] A Quantization Matrix Design using Total Variation for Sparse Representation-based Image Coding2020

    • Author(s)
      Ji Wang, Yoshiyuki Yashima
    • Organizer
      IEEE 9th Global Conference on Consumer Electronics (GCCE2020)
    • Related Report
      2020 Annual Research Report
    • Int'l Joint Research
  • [Presentation] CNNに基づく幾何変換行列を用いたアニメーション中割りフレームの自動生成2020

    • Author(s)
      坂本貴史,八島由幸
    • Organizer
      電子情報通信学会2020年画像符号化/映像処理シンポジウム
    • Related Report
      2020 Annual Research Report
  • [Presentation] Full reference image quality assessment by CNN feature maps and visual saliency2019

    • Author(s)
      Yu Iwashima, Ji Wang, Yoshiyuki Yashima
    • Organizer
      IEEE 8th Global Conference on Consumer Electronics (GCCE) 2019
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research
  • [Presentation] 特異値分解と量子化によるDNN全結合層係数の情報圧縮2019

    • Author(s)
      青柿亮太,八島由幸
    • Organizer
      電子情報通信学会2019年画像符号化/映像処理シンポジウム
    • Related Report
      2019 Research-status Report
  • [Presentation] RNN/LSTMを用いたビットストリームからの画像認識精度に関する考察2019

    • Author(s)
      冨田直生,八島由幸
    • Organizer
      電子情報通信学会2019年画像符号化/映像処理シンポジウム
    • Related Report
      2019 Research-status Report
  • [Presentation] 深層学習を用いたフレーム間予測における効率的なDNN設計法2019

    • Author(s)
      姜思徳,八島由幸
    • Organizer
      電子情報通信学会2019年画像符号化/映像処理シンポジウム
    • Related Report
      2019 Research-status Report
  • [Presentation] Block adaptive CNN/HEVC interframe prediction for video coding2019

    • Author(s)
      Satoru Jimbo, Ji Wang, Yoshiyuki Yashima
    • Organizer
      Proc. of SPIE, vol. 11049, International Workshop on Advanced Image Technology (IWAIT) 2019.
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research
  • [Presentation] CNN 中間層出力と顕著性マップを用いたフルリファレンス型画質評価2019

    • Author(s)
      岩島悠, 神保悟, 王冀, 八島由幸
    • Organizer
      2019年電子情報通信学会総合大会
    • Related Report
      2018 Research-status Report
  • [Presentation] DNNに基づく変換行列を用いたフレーム補間性能の符号化雑音依存特性2018

    • Author(s)
      神保悟, 王冀, 八島由幸
    • Organizer
      第17回情報科学技術フォーラム
    • Related Report
      2018 Research-status Report
  • [Presentation] Deep learning-based transformation matrix estimation for bidirectional interframe prediction2018

    • Author(s)
      Satoru Jimbo, Ji Wang, Yoshiyuki Yashima
    • Organizer
      IEEE Global Conference on Consumer Electronics 2018
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research
  • [Remarks]

    • URL

      http://www.vpc.net.it-chiba.ac.jp/

    • Related Report
      2019 Research-status Report

URL: 

Published: 2018-04-23   Modified: 2022-01-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi