• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Large-scale conversation corpus creation by automatic quality estimation

Research Project

Project/Area Number 18K11435
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 61030:Intelligent informatics-related
Research InstitutionOsaka University

Principal Investigator

Arase Yuki  大阪大学, 情報科学研究科, 准教授 (00747165)

Project Period (FY) 2018-04-01 – 2021-03-31
Project Status Completed (Fiscal Year 2020)
Budget Amount *help
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2020: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2019: ¥1,820,000 (Direct Cost: ¥1,400,000、Indirect Cost: ¥420,000)
Fiscal Year 2018: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Keywords対話システム / 応答生成 / ニューラル対話モデル / 対話コーパス / 語用論的言い換え / 自然言語処理 / 対話破綻検出 / スタイル変換 / 言語資源
Outline of Final Research Achievements

Neural conversation models based on deep neural networks have significantly improved fluency in response generation. However, these fluent responses are not necessarily satisfactory. Previous studies have revealed that automatically generated responses would break down a conversation between a user and system. Furthermore, even though these automatic responses are acceptable, they tend to be less attractive to users and may degrade user engagements. To address these problems, we developed novel neural conversation models that are sensitive to users’ utterances and generate meaningful responses. Further, we created a conversation corpus that opens up a new door to the conversational system’s research. It contributes to advancing natural language understanding technology to infer users’ hidden intents from their indirect utterances.

Academic Significance and Societal Importance of the Research Achievements

本研究で開発したユーザの発話内容に則しつつ情報量の多い応答を生成できるモデルは、これまで当該研究分野で広く認識されていた問題を解決するものであり、学術的だけでなく産業的貢献も大きい。また本研究で構築した対話コーパスは、これまで重要性を認知されながら手つかずであった、ユーザ発話に隠された言外の意図の推定を可能とするものであり、対話システム研究に新たな扉を開く、顕著な学術的貢献を持つ。

Report

(4 results)
  • 2020 Annual Research Report   Final Research Report ( PDF )
  • 2019 Research-status Report
  • 2018 Research-status Report
  • Research Products

    (8 results)

All 2020 2019 2018

All Journal Article (1 results) (of which Peer Reviewed: 1 results) Presentation (7 results) (of which Int'l Joint Research: 4 results,  Invited: 1 results)

  • [Journal Article] Dialogue breakdown detection robust to variations in annotators and dialogue systems2019

    • Author(s)
      Junya Takayama, Eriko Nomoto, and Yuki Arase
    • Journal Title

      Computer Speech & Language

      Volume: 54 Pages: 31-43

    • DOI

      10.1016/j.csl.2018.08.007

    • Related Report
      2018 Research-status Report
    • Peer Reviewed
  • [Presentation] Consistent Response Generation with Controlled Specificity2020

    • Author(s)
      Junya Takayama and Yuki Arase
    • Organizer
      Findings of the Association for Computational Linguistics: EMNLP 2020
    • Related Report
      2020 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Responsive and Self-Expressive Dialogue Generation2019

    • Author(s)
      K. Chikai, J. Takayama, and Y. Arase
    • Organizer
      Workshop on NLP for Conversational AI
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research
  • [Presentation] Relevant and Informative Response Generation using Pointwise Mutual Information2019

    • Author(s)
      J. Takayama and Y. Arase
    • Organizer
      Workshop on NLP for Conversational AI
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research
  • [Presentation] Dialogue-Act Prediction of Future Response based on Conversation History2019

    • Author(s)
      K. Tanaka, J. Takayama, and Y. Arase
    • Organizer
      Annual Meeting of the Association for Computational Linguistics: Student Research Workshop
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research
  • [Presentation] 人工知能における「対話」と「共感」2019

    • Author(s)
      荒瀬 由紀
    • Organizer
      第2回日本心身医学関連学会合同集会
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] 対話システムにおける履歴を考慮した応答の対話行為推定2019

    • Author(s)
      田中昂志, 高山隼矢, 荒瀬由紀
    • Organizer
      第33回人工知能学会全国大会 (JSAI2019)
    • Related Report
      2019 Research-status Report
  • [Presentation] スタイル変換のためのリファレンスなし教師あり学習2018

    • Author(s)
      三浦びわ, 梶原智之, 荒瀬由紀
    • Organizer
      NLP若手の会 第13回シンポジウム
    • Related Report
      2018 Research-status Report

URL: 

Published: 2018-04-23   Modified: 2022-01-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi