• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Development of a time-series medical data mining method based on fuzzy ranged relations

Research Project

Project/Area Number 18K11438
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 61030:Intelligent informatics-related
Research InstitutionShimane University

Principal Investigator

Hirano Shoji  島根大学, 学術研究院医学・看護学系, 准教授 (60333506)

Project Period (FY) 2018-04-01 – 2023-03-31
Project Status Completed (Fiscal Year 2022)
Budget Amount *help
¥3,900,000 (Direct Cost: ¥3,000,000、Indirect Cost: ¥900,000)
Fiscal Year 2020: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2019: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2018: ¥1,950,000 (Direct Cost: ¥1,500,000、Indirect Cost: ¥450,000)
Keywords時系列データマイニング / ファジイ状態区間 / 医療データ / 状態区間 / データマイニング
Outline of Final Research Achievements

In this research, we have developed a time-series medical data mining method that can describe the temporal course of disease and treatment. In contrast to conventional mining methods based on interval relations, the proposed method introduces the concept of fuzzy ranged relations, allowing the extraction of frequent patterns that include abstract periods such as several weeks or a few days. Furthermore, experiments on a synthetic dataset demonstrated that the introduction of fuzziness allows for a single sequence to belong to multiple relations, making it possible to suppress the decrease of support values when we define many relations.

Academic Significance and Societal Importance of the Research Achievements

本研究で開発した手法により,イベント発生に至るまでの患者病態・治療等の特徴的推移をMPTP(Minimal Predictive Temporal Pattern)として診療データベースから抽出することができ,背景理解,治療計画立案,アウトカム予測等への活用が期待される。また,プロセスマイニングの一手法として医療以外の様々な分野へも応用可能である。

Report

(6 results)
  • 2022 Annual Research Report   Final Research Report ( PDF )
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • Research Products

    (2 results)

All 2019

All Presentation (2 results) (of which Int'l Joint Research: 1 results)

  • [Presentation] ファジイ区間関係に基づく時系列医療データからの頻出パターンマイニング2019

    • Author(s)
      平野章二, 津本周作
    • Organizer
      第8回人工知能学会医用人工知能研究会
    • Related Report
      2019 Research-status Report
  • [Presentation] Mining frequent temporal patterns from medical data based on fuzzy ranged relations2019

    • Author(s)
      Shoji Hirano, Shusaku Tsumoto
    • Organizer
      IEEE BigData 2019
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research

URL: 

Published: 2018-04-23   Modified: 2024-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi