• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Proposal of new evaluation value for combinatorial optimization problem using deep learning

Research Project

Project/Area Number 18K11484
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 61040:Soft computing-related
Research InstitutionKansai University

Principal Investigator

EBARA Hiroyuki  関西大学, システム理工学部, 教授 (50194014)

Project Period (FY) 2018-04-01 – 2022-03-31
Project Status Completed (Fiscal Year 2021)
Budget Amount *help
¥4,550,000 (Direct Cost: ¥3,500,000、Indirect Cost: ¥1,050,000)
Fiscal Year 2020: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2019: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2018: ¥1,950,000 (Direct Cost: ¥1,500,000、Indirect Cost: ¥450,000)
Keywords深層学習 / 強化学習 / 機械学習 / 組合せ最適化問題 / 巡回セールスマン問題 / 最適化問題 / 最適化 / 近似解法
Outline of Final Research Achievements

In this research, I propose approximate solution methods that apply deep learning and deep reinforcement learning to the traveling salesman problem, which is one of the combinatorial optimization problems. The deep learning is trained to learn the optimum solution or the near-optimal solution as an image for a large number of randomly generated problem instances, and an evaluation value is calculated from the image data obtained as an output. The evaluation value obtained by learning is adopted to the heuristic solution method instead of the conventional evaluation value based on distance, in order to obtain a solution. Computational experiments have shown that the evaluation values obtained by learning are valid.

Academic Significance and Societal Importance of the Research Achievements

組合せ最適化問題、特に、巡回セールスマン問題は応用範囲がたいへん広く、宅配便の配送計画や、ロボットの動作計画、プリント基板のドリル穴空け問題などに応用できるため、社会的意義は大きいと考える。
さらに、巡回セールスマン問題は、最も研究されている組合せ最適化問題の1つであり、この問題にディープラーニング手法の有効性を示すことは、他の組合せ最適化問題へも応用を示唆するとともに、ディープラーニングの新たな応用分野を示すことにもなっており、学術的意義は大きいと考える。

Report

(5 results)
  • 2021 Annual Research Report   Final Research Report ( PDF )
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • Research Products

    (7 results)

All 2022 2019 2018

All Journal Article (1 results) (of which Peer Reviewed: 1 results) Presentation (6 results) (of which Int'l Joint Research: 2 results)

  • [Journal Article] 深層学習を用いた巡回セールスマン問題の解法2019

    • Author(s)
      (1)三木彰馬, 榎原博之
    • Journal Title

      情報処理学会論文誌

      Volume: 60 Pages: 651-659

    • NAID

      120006811815

    • Related Report
      2018 Research-status Report
    • Peer Reviewed
  • [Presentation] 強化学習を用いた畳み込みニューラルネットワークによる巡回セールスマン問題の解法2022

    • Author(s)
      三木彰馬, 榎原博之
    • Organizer
      情報処理学会 第84回全国大会
    • Related Report
      2021 Annual Research Report
  • [Presentation] Solving Traveling Salesman Problem with Image-based Classification2019

    • Author(s)
      Shoma MIKI, Hiroyuki EBARA
    • Organizer
      IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI), Portland, OR, USA
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research
  • [Presentation] 巡回セールスマン問題に対するファインチューニング2019

    • Author(s)
      濱洲陵, 山本大輔, 三木彰馬, 榎原博之
    • Organizer
      2019年電子情報通信学会 基礎・境界ソサイエティ大会 (N-1-16), 大阪大学
    • Related Report
      2019 Research-status Report
  • [Presentation] 強化学習を用いた巡回セールスマン問題の解法2019

    • Author(s)
      山本大輔,三木彰馬,榎原博之
    • Organizer
      情報処理学会 第81回全国大会
    • Related Report
      2018 Research-status Report
  • [Presentation] Applying Deep Learning and Reinforcement Learning to Traveling Salesman Problem2018

    • Author(s)
      Shoma MIKI, Daisuke YAMAMOTO, Hiroyuki EBARA
    • Organizer
      IEEE International Conference on Computing, Electronics & Communications Engineering 2018
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research
  • [Presentation] 深層学習を用いた組合せ最適化問題の解法と強化学習の適用2018

    • Author(s)
      三木彰馬, 山本大輔, 榎原博之
    • Organizer
      情報処理学会 数理モデル化と問題解決研究会,
    • Related Report
      2018 Research-status Report

URL: 

Published: 2018-04-23   Modified: 2023-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi