• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Structure-based ligand activity prediction using 3-dimensional convolution neural network

Research Project

Project/Area Number 18K11524
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 62010:Life, health and medical informatics-related
Research InstitutionTokyo Institute of Technology

Principal Investigator

Ishida Takashi  東京工業大学, 情報理工学院, 准教授 (40508355)

Project Period (FY) 2018-04-01 – 2021-03-31
Project Status Completed (Fiscal Year 2020)
Budget Amount *help
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2020: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2019: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2018: ¥1,950,000 (Direct Cost: ¥1,500,000、Indirect Cost: ¥450,000)
Keywords深層学習 / 化合物活性予測 / ヴァーチャルスクリーニング / タンパク質立体構造 / リガンド結合ポケット / 薬剤活性予測 / 3次元畳み込みニューラルネットワーク / エンドツーエンド表現学習 / タンパク質ポケット構造 / グラフニューラルネットワーク / 3次元畳み込みニューラルネットワーク / ヴァーチャル・スクリーニング
Outline of Final Research Achievements

We developed a novel machine-learning based compound activity prediction using binding pocket information. The method converts a binding pocket structure of a target protein to a structure-graph and uses a graph convolutional neural network for end-to-end learning. The proposed method achieved better accuracy than a method only using protein sequence information. Additionally, the proposed method was more accurate and fast than a docking calculation using Autodock Vina.

Academic Significance and Societal Importance of the Research Achievements

新規のタンパク質に対しても利用可能なタンパク質構造と化合物構造を入力とした深層学習ベースの化合物活性予測手法を新たに開発した。これにより、実験情報のない新規のタンパク質に対しても化合物活性予測の適用が可能となり、応用可能な範囲が広がった。しかし、残念ながらその予測精度はまだ不十分であり、より実用的な利用にはさらなる今後の改良が必要となっている。

Report

(4 results)
  • 2020 Annual Research Report   Final Research Report ( PDF )
  • 2019 Research-status Report
  • 2018 Research-status Report
  • Research Products

    (13 results)

All 2021 2020 2019 2018

All Journal Article (6 results) (of which Peer Reviewed: 6 results,  Open Access: 2 results) Presentation (7 results)

  • [Journal Article] Single-Step Retrosynthesis Prediction Based on the Identification of Potential Disconnection Sites Using Molecular Substructure Fingerprints2021

    • Author(s)
      Hasic Haris、Ishida Takashi
    • Journal Title

      Journal of Chemical Information and Modeling

      Volume: 61 Issue: 2 Pages: 641-652

    • DOI

      10.1021/acs.jcim.0c01100

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed
  • [Journal Article] P3CMQA: Single-Model Quality Assessment Using 3DCNN with Profile-Based Features2021

    • Author(s)
      Takei Yuma、Ishida Takashi
    • Journal Title

      Bioengineering

      Volume: 8 Issue: 3 Pages: 40-40

    • DOI

      10.3390/bioengineering8030040

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Sequence alignment generation using intermediate sequence search for homology modeling2020

    • Author(s)
      Makigaki Shuichiro、Ishida Takashi
    • Journal Title

      Computational and Structural Biotechnology Journal

      Volume: 18 Pages: 2043-2050

    • DOI

      10.1016/j.csbj.2020.07.012

    • NAID

      120007039217

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Sequence alignment using machine learning for accurate template-based protein structure prediction2019

    • Author(s)
      Makigaki Shuichiro、Ishida Takashi
    • Journal Title

      Bioinformatics

      Volume: 36 Issue: 1 Pages: 104-111

    • DOI

      10.1093/bioinformatics/btz483

    • Related Report
      2019 Research-status Report
    • Peer Reviewed
  • [Journal Article] Protein model accuracy estimation based on local structure quality assessment using 3D convolutional neural network2019

    • Author(s)
      Sato Rin、Ishida Takashi
    • Journal Title

      PLOS ONE

      Volume: 14 Issue: 9 Pages: 221347-221347

    • DOI

      10.1371/journal.pone.0221347

    • NAID

      120006889233

    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] End-to-End Learning Based Compound Activity Prediction Using Binding Pocket Information2019

    • Author(s)
      Tanebe Toshitaka、Ishida Takashi
    • Journal Title

      2019 International Conference on Intelligent Computing

      Volume: 11644 Pages: 226-234

    • DOI

      10.1007/978-3-030-26969-2_21

    • ISBN
      9783030269685, 9783030269692
    • Related Report
      2019 Research-status Report
    • Peer Reviewed
  • [Presentation] タンパク質配列情報と薬剤結合部位構造情報を用いた新規タンパク質に対する深層学習リガンド結合予測2019

    • Author(s)
      松村真里, 石田貴士
    • Organizer
      第八回生命医薬情報学連合会
    • Related Report
      2019 Research-status Report
  • [Presentation] GCMQA: Graph convolutional neural network for model quality assessment2019

    • Author(s)
      Rin Sato and Takashi Ishida
    • Organizer
      第八回生命医薬情報学連合会
    • Related Report
      2019 Research-status Report
  • [Presentation] ポケット構造情報を考慮したエンドツーエンド表現学習によるリガンド結合予測2019

    • Author(s)
      種部俊孝、石田貴士
    • Organizer
      情報処理学会第57回BIO研究発表会
    • Related Report
      2018 Research-status Report
  • [Presentation] グラフ畳み込みを用いたタンパク質予測立体構造の評価手法の開発2019

    • Author(s)
      佐藤倫、石田貴士
    • Organizer
      情報処理学会第57回BIO研究発表会
    • Related Report
      2018 Research-status Report
  • [Presentation] タンパク質ポケット構造情報を考慮した機会学習によるリガンド結合予測2018

    • Author(s)
      種部俊孝、石田貴士
    • Organizer
      生命医薬情報学連合大会2018年大会
    • Related Report
      2018 Research-status Report
  • [Presentation] 深層学習を用いたタンパク質予測立体構造モデルの評価2018

    • Author(s)
      佐藤倫、石田貴士
    • Organizer
      情報処理学会第54回BIO研究会
    • Related Report
      2018 Research-status Report
  • [Presentation] 3次元畳み込みニューラルネットワークを用いたタンパク質予測立体構造の評価手法の開発2018

    • Author(s)
      佐藤倫、石田貴士
    • Organizer
      生命医薬情報学連合大会2018年大会
    • Related Report
      2018 Research-status Report

URL: 

Published: 2018-04-23   Modified: 2022-01-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi