Project/Area Number |
18K11708
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 64030:Environmental materials and recycle technology-related
|
Research Institution | Mie University |
Principal Investigator |
Kimura Tetsuya 三重大学, 生物資源学研究科, 教授 (00281080)
|
Project Period (FY) |
2018-04-01 – 2021-03-31
|
Project Status |
Completed (Fiscal Year 2020)
|
Budget Amount *help |
¥4,420,000 (Direct Cost: ¥3,400,000、Indirect Cost: ¥1,020,000)
Fiscal Year 2020: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2019: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2018: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
|
Keywords | Clostridium / 水素ガス / バイオマス / 遺伝子工学 / 嫌気性細菌 / 乳酸デヒドロゲナーゼ / エタノール耐性 / セルロース / 乳酸 / Ruminiclostridium |
Outline of Final Research Achievements |
The ultimate goal is to use the anaerobic bacterium Clostridium paraputrificum to produce bio-hydrogen gas, which efficiently use the marine biomass chitin as an energy source without the environment load. The hydrogen gas production pathway of this bacterium was analyzed by applying the recent molecular biological gene disruption method, ClosTron technology. As a result, the conversion pathway from pyruvate to acetyl-CoA is important for hydrogen gas production, and pyruvate ferredoxin oxidoreductase, which catalyzes this step peculiar to anaerobic bacteria, is essential for growth. It was clarified that inhibition of lactate production pathway increased hydrogen gas production due to the metabolic flow change. When pyruvate to lactate is blocked, flow from pyruvate to acetyl-CoA by pyruvate ferredoxin oxidoreductase would be increased.
|
Academic Significance and Societal Importance of the Research Achievements |
嫌気性細菌の研究は、第二次大戦時代に石油代替え燃料としてアセトン・ブタノール発酵の研究がなされ、エネルギー資源の乏しい我が国が世界に先駆けていたが、その後はあまり研究されてこなかった。近年、地球温暖化対策の観点から、嫌気性菌による発酵は世界的にも再び注目を浴びている。嫌気性菌には難分解性バイオマスを分解し、水素ガスを生産する優れたものが存在するが、水素利用技術で世界をリードする我が国にとっても非常に重要である。本研究で水素を高生産するオリジナルの菌株で水素生産経路を明らかにした意義は、新しいゲノム編集技術を応用したバイオ水素ガスの高生産株育種のための基盤情報として意義が大きい。
|