Project/Area Number |
18K11921
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 80040:Quantum beam science-related
|
Research Institution | Osaka University |
Principal Investigator |
tojo sachiko 大阪大学, 産業科学研究所, 助教 (50197844)
|
Project Period (FY) |
2018-04-01 – 2022-03-31
|
Project Status |
Completed (Fiscal Year 2021)
|
Budget Amount *help |
¥3,900,000 (Direct Cost: ¥3,000,000、Indirect Cost: ¥900,000)
Fiscal Year 2020: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2019: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2018: ¥2,600,000 (Direct Cost: ¥2,000,000、Indirect Cost: ¥600,000)
|
Keywords | 電子線 / パルスラジオリシス / 過渡吸収 / 過渡ラマン / 活性中間体 / 量子ビーム誘起反応 / 時間分解拡散反射分光 / 不均一反応場 / 過渡ラマン分光 / 過渡吸収分光 |
Outline of Final Research Achievements |
Nanosecond electron pulse radiolysis system has been renewed to investigate the quantum beam-induced reactions in heterogeneous fields. The transient absorption spectra of the various intermediates were observed to the 1000 nm during single-shot electron pulse. The oxidation and dimerization of the sulfur compounds were studied using transient absorption and time-resolved resonance Raman spectroscopy (TR3) during pulse radiolysis and density functional theory calculations. The formation of dimer radical cations with two-center three-electron bond between two sulfur atoms were observed with TR3 measurements during pulse radiolysis. The dynamics of proton transfer in adenosine radical cation were studied in both acidic and neutral pH solutions by using transient absorption and TR3 methods in combination with pulse radiolysis. The time-resolved infrared spectroscopy was introduced to pulse radiolysis system.
|
Academic Significance and Societal Importance of the Research Achievements |
電子線パルスラジオリシス拡散反射法による様々な材料・状態・環境下におけるパルスラジオリシス測定の発展により分子レベル量子ビーム誘起反応からバルク量子ビーム誘起反応への拡大が期待される。電子線パルスラジオリシス拡散反射法によるin vitro生体関連系へのパルスラジオリシス測定の発展や量子ビーム誘起反応機構解明による医療分野への貢献が期待される。不均一反応場量子ビーム誘起反応機構の解明による各種高分子材料の次世代加工技術の応用、耐放射性材料の開発も可能となる。不均一系環境汚染物質分解法によるグリーンイノベーションと不均一反応場が及ぼす量子ビーム誘起特異的反応の創出が期待される。
|