Project/Area Number |
18K12059
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Review Section |
Basic Section 90110:Biomedical engineering-related
|
Research Institution | Mie University (2020-2021) Osaka University (2018-2019) |
Principal Investigator |
|
Project Period (FY) |
2018-04-01 – 2022-03-31
|
Project Status |
Completed (Fiscal Year 2021)
|
Budget Amount *help |
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2020: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2019: ¥2,080,000 (Direct Cost: ¥1,600,000、Indirect Cost: ¥480,000)
Fiscal Year 2018: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
|
Keywords | 医用生体工学 / 神経工学 / 神経補綴 / 人工視覚 / 脳皮質内刺激 / 神経インタフェース / 電子デバイスシステム / 神経生理学実験 / 生理学実験 / 埋植型電子デバイス / 脳皮質刺激 |
Outline of Final Research Achievements |
In order to establish neural prostheses for patients suffering from intractable neural dysfunctions, methods and techniques for precisely driving/controlling the spatiotemporal neural activity in the target neural tissue such as the cerebral cortex are required. In the present study, 1) we developed a hardware system that controls our previously developed multi-channel neural stimulator,and also a GUI software that supports the designing of the spatiotemporal patterns of stimuli generated by this system, 2) through the experiments with the voltage-sensitive dye fast imaging at millisecond temporal resolution in the cerebral tissue slices, we obtained new findings on spatiotemporal properties and physiological mechanisms of the neural activity induced by stimulation with the intra-cortical single microelectrode,and also on independence and nonlinear additivity of the neural responses to stimulation with multiple microelectrodes.
|
Academic Significance and Societal Importance of the Research Achievements |
本研究で開発した神経組織内刺激システムは、先行開発した刺激デバイスの追加接続によって最大4096チャネルの微小電極を介して、高精度の時空間パターン電流刺激を生成可能とし、特に①チャネル数変更の高い自由度、②刺激パターンの一括設計・管理、③刺激による神経駆動実証済み等の点において他に類が無く、次世代型神経補綴の実現に向けた臨床前研究において極めて有用なツールとなる。また本研究で見出した刺激印加後の数~数十ミリ秒以内に生じる刺激誘発性神経活動に関する新知見は、それが高時間分解能のイメージングデータから得られたことより、その確証性は非常に高く、また組織内での微小電極配置の定量設計等に不可欠となる。
|