• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Study for performance improvement of automated lesion detection system in medical images using weakly-labeled data

Research Project

Project/Area Number 18K12096
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 90130:Medical systems-related
Research InstitutionThe University of Tokyo

Principal Investigator

Nomura Yukihiro  東京大学, 医学部附属病院, 特任講師 (60436491)

Project Period (FY) 2018-04-01 – 2021-03-31
Project Status Completed (Fiscal Year 2020)
Budget Amount *help
¥3,900,000 (Direct Cost: ¥3,000,000、Indirect Cost: ¥900,000)
Fiscal Year 2020: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2019: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2018: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Keywords医用画像 / 診断支援システム / ディープラーニング / セグメンテーション / 異常検知 / 機械学習 / ラベル
Outline of Final Research Achievements

In this research, we constructed a methodology for performance improvement of an automated lesion detection system using weakly-labeled data. We constructed two types of lesion shape label estimation methods using the location of a lesion center and the measured size. In addition, we prepared to implement the constructed lesion shape estimation method in the web-based image database (CIRCUS DB). We also constructed automated lesion detection systems based on anomaly detection trained using data where only the existence of lesions is known.

Academic Significance and Societal Importance of the Research Achievements

本研究の成果として得られた、病変ラベル推定方法および病変の存在のみが既知な症例を用いた異常検知手法を用いることで、症例データ収集における医師の負担が軽減され、かつ臨床現場に多数ある弱ラベル付症例が利用可能となる。このため、病変自動検出システムの研究のさらなる推進が図れると考える。病変自動検出システムの研究が進めば多くの高性能なシステムが臨床現場で使用されるようになり、臨床画像診断の質的向上に寄与すると考える。

Report

(4 results)
  • 2020 Annual Research Report   Final Research Report ( PDF )
  • 2019 Research-status Report
  • 2018 Research-status Report
  • Research Products

    (10 results)

All 2021 2020 2019 2018

All Journal Article (4 results) (of which Peer Reviewed: 4 results,  Open Access: 2 results) Presentation (6 results) (of which Int'l Joint Research: 2 results)

  • [Journal Article] Unsupervised Deep Anomaly Detection in Chest Radiographs2021

    • Author(s)
      Nakao Takahiro、Hanaoka Shouhei、Nomura Yukihiro、Murata Masaki、Takenaga Tomomi、Miki Soichiro、Watadani Takeyuki、Yoshikawa Takeharu、Hayashi Naoto、Abe Osamu
    • Journal Title

      Journal of Digital Imaging

      Volume: n/a Issue: 2 Pages: 418-427

    • DOI

      10.1007/s10278-020-00413-2

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Development of training environment for deep learning with medical images on supercomputer system based on asynchronous parallel Bayesian optimization2020

    • Author(s)
      Nomura Y, Sato I, Hanawa T, Hanaoka S, Nakao T, Takenaga T, Hoshino T, Sekiya Y, Miki S, Yoshikawa T, Hayashi N, Abe O
    • Journal Title

      Journal of Supercomputing

      Volume: - Issue: 9 Pages: 7315-7332

    • DOI

      10.1007/s11227-020-03164-7

    • Related Report
      2019 Research-status Report
    • Peer Reviewed
  • [Journal Article] Novel platform for development, training, and validation of computer-assisted detection/diagnosis software2020

    • Author(s)
      Nomura Y, Miki S, Hayashi N, Hanaoka S, Sato I, Yoshikawa T, Masutani Y, Abe O
    • Journal Title

      Int J Comput Assist Radiol Surg

      Volume: 15 Issue: 4 Pages: 661-672

    • DOI

      10.1007/s11548-020-02132-z

    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Can the spherical gold standards be used as an alternative to painted gold standards for the computerized detection of lesions using voxel-based classification?2018

    • Author(s)
      Nomura Y, Hayashi N, Hanaoka S, Takenaga T, Nemoto M, Miki S, Yoshikawa T, Abe O
    • Journal Title

      Japanese Journal of Radiology

      Volume: 37 Issue: 3 Pages: 264-273

    • DOI

      10.1007/s11604-018-0784-6

    • NAID

      210000187082

    • Related Report
      2018 Research-status Report
    • Peer Reviewed
  • [Presentation] ディープラーニングに基づく3次元汎用半自動病変セグメンテーションの初期検討2020

    • Author(s)
      野村行弘, 花岡昇平, 竹永智美, 中尾貴祐, 柴田寿一, 三木聡一郎, 吉川健啓, 渡谷岳行, 林直人, 阿部修
    • Organizer
      第39回日本医用画像工学会大会
    • Related Report
      2020 Annual Research Report
  • [Presentation] Deep generative model-based unsupervised detectionof inappropriate images in a chest X-ray dataset2019

    • Author(s)
      Nakao T, Hanaoka S, Nomura Y, Murata M, Takenaga T, Miki S, Watadani T, Yoshikawa T, Hayashi N, Abe O
    • Organizer
      CARS 2019
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research
  • [Presentation] 新たなwebベースの統合的CAD開発プラットフォームの構築2019

    • Author(s)
      野村行弘、三木聡一郎、林直人、花岡昇平、吉川健啓、増谷佳孝、阿部修
    • Organizer
      電子情報通信学会医用画像研究会
    • Related Report
      2018 Research-status Report
  • [Presentation] Preliminary study of automated pulmonary mass detection in chest radiography using U-Net2019

    • Author(s)
      Nomura Y, Hayashi N, Hanaoka S, Yoshikawa T, Murata M, Nakao T, Takenaga T, Miki S, Watadani T, Abe O
    • Organizer
      第78回日本医学放射線学会総会
    • Related Report
      2018 Research-status Report
  • [Presentation] Preliminary study of automated detection of pulmonary nodule in ultrashort echo time MR images2019

    • Author(s)
      Nomura Y, Hanaoka S, Yoshikawa T, Sato I, Nakao T, Murata M, Takenaga T, Koshino S, Miki S, Watadani T, Hayashi N, Abe O
    • Organizer
      CARS 2019
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research
  • [Presentation] MRIにおける脳転移検出に対するConvolutional Neural Network の応用:線量分布を正解データとして利用2018

    • Author(s)
      村田仁樹、花岡昇平、野村行弘、竹永智美、中尾貴祐、高橋渉、名和要武、吉川健啓、林直人、阿部修
    • Organizer
      第37回日本医用画像工学会大会
    • Related Report
      2018 Research-status Report

URL: 

Published: 2018-04-23   Modified: 2022-01-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi