• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

XX

Research Project

Project/Area Number 18K12141
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Review Section Basic Section 90150:Medical assistive technology-related
Research InstitutionTokyo Medical and Dental University

Principal Investigator

MIYAJIMA Miho  東京医科歯科大学, 大学院医歯学総合研究科, 助教 (70616177)

Co-Investigator(Kenkyū-buntansha) 藤原 幸一  名古屋大学, 工学研究科, 准教授 (10642514)
山川 俊貴  熊本大学, 大学院先端科学研究部(工), 准教授 (60510419)
Project Period (FY) 2018-04-01 – 2021-03-31
Project Status Completed (Fiscal Year 2020)
Budget Amount *help
¥4,290,000 (Direct Cost: ¥3,300,000、Indirect Cost: ¥990,000)
Fiscal Year 2020: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2019: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Fiscal Year 2018: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Keywordsてんかん発作検知 / 心拍変動解析 / 心拍変動 / ウェアラブルデバイス / ニューラルネットワーク / マルチモダリティ計測 / てんかん発作自動検出 / ウェアラブルシステム / てんかん発作重症度評価
Outline of Final Research Achievements

We used autoencoder, which is a type of neural network, for detecting changes in heart rate variability associated with an epileptic seizure. We collected electrocardiogram data from 66 patients with focal epilepsy. The collected ictal data included focal aware seizures and focal impaired awareness seizures as well as focal to bilateral tonic-clonic seizures. We trained an autoencoder model from randomly selected 78 hours of interictal data and validated the model using the rest of episodes. The overall seizure detection sensitivity by 60 sec from clinical seizure onset was 77.6%. The area under the curve (AUC) of 0.92 was achieved. This means the level of detection performance is generally considered meaningful. The false positive rate for an unknown cause was 1.5 per hour. This results suggest that the proposed epileptic seizure detection algorithm demonstrated preferable performance focal seizures including nonconvulsive seizures.

Academic Significance and Societal Importance of the Research Achievements

心拍データのみを用いて、比較的軽い発作も含め高性能で発作検知が可能なアルゴリズムを構築できた。今後、本アルゴリズムを代表者らの有するウェアラブルてんかんモニタリングシステムのプラットフォームに実装し、プロトタイプ構築および精度検証を目指したい。
本研究の成果は、発作を検出してオンデマンド抑制するclosed-loop型治療や、発作記録に基づき治療方針を示唆する人工知能診療支援システムなど、次世代のてんかんケアにも応用可能性が高い。更に心拍や呼吸の持続モニタリング技術は、近年問題視されているてんかん突然死の病態解明にも役立つことが期待される。

Report

(4 results)
  • 2020 Annual Research Report   Final Research Report ( PDF )
  • 2019 Research-status Report
  • 2018 Research-status Report
  • Research Products

    (7 results)

All 2021 2020 2019

All Journal Article (2 results) Presentation (5 results) (of which Int'l Joint Research: 2 results,  Invited: 1 results)

  • [Journal Article] ウェアラブルてんかんモニタリングシステム2020

    • Author(s)
      宮島美穂
    • Journal Title

      Epilepsy

      Volume: 14(1) Pages: 40-43

    • Related Report
      2019 Research-status Report
  • [Journal Article] てんかんを取り巻く社会の動向 てんかん発作検知・予知に関する最近の研究動向2019

    • Author(s)
      宮島美穂、藤原幸一、山川俊貴
    • Journal Title

      クリニシアン

      Volume: 66(5-6) Pages: 440-445

    • Related Report
      2019 Research-status Report
  • [Presentation] AUTOENCODER NEURAL NETWORK ALGORITHM FOR EPILEPTIC SEIZURE DETECTION BASED ON HEART RATE VARIABILITY ANALYSIS2021

    • Author(s)
      M. MIYAJIMA, A. GODA, M. SERINO, Y. SUZUKI, F. SAKANE, K. FUJIWARA, T. YAMAKAWA, Y. WATANABE, S. HASHIMOTO, M. INAJI, K. JIN, N. NAKASATO, Y. SAWAI, T. HOSHIDA, T. MAEHARA, M. KANO, H. TAKAHASHI
    • Organizer
      20th WPA World Congress of Psychiatry
    • Related Report
      2020 Annual Research Report
    • Int'l Joint Research
  • [Presentation] 心拍変動に基づくてんかん発作検出アルゴリズムの汎用性の検証2021

    • Author(s)
      芹野真郷, 関沢拓海, 合田飛, 宮島美穂, 藤原幸一, 加納学, 稲次基希, 前原健寿, 高橋英彦
    • Organizer
      第8回全国てんかんセンター協議会学総会
    • Related Report
      2020 Annual Research Report
  • [Presentation] 心拍変動解析に基づくてんかん発作自動検知の試み2020

    • Author(s)
      宮島美穂、藤原幸一、合田飛、関拓哉、芹野真郷、稲次基希、岩崎真樹、田端さつき、神一敬、中里信和、澤井康子、大杉奈保美、前原健寿
    • Organizer
      第7回全国てんかんセンター協議会総会
    • Related Report
      2019 Research-status Report
  • [Presentation] Autoencoder Neural Network Algorithm For Epileptic Seizure Detection Based On Heart Rate Variability Analysis2020

    • Author(s)
      Miyajima M , Fujiwara K , Suzuki Y , Fumiya S , Kano M , Yamakawa T , Inaji M , Jin K , Nakasato N , Sawai Y , Hoshida T , Watanabe Y , Yamamoto S , Nagamoto T , Maehara T
    • Organizer
      14th European Congress on Epileptology
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research
  • [Presentation] ウェアラブルデバイスを用いたてんかん発作モニタリングの試み2019

    • Author(s)
      宮島美穂
    • Organizer
      第13回てんかんリハビリテーション研究会
    • Related Report
      2019 Research-status Report
    • Invited

URL: 

Published: 2018-04-23   Modified: 2022-01-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi