• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Application of quantile regression to marketing

Research Project

Project/Area Number 18K12881
Research Category

Grant-in-Aid for Early-Career Scientists

Allocation TypeMulti-year Fund
Review Section Basic Section 07090:Commerce-related
Research InstitutionHosei University

Principal Investigator

Hasegawa Shohei  法政大学, 経営学部, 准教授 (30712921)

Project Period (FY) 2018-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥2,600,000 (Direct Cost: ¥2,000,000、Indirect Cost: ¥600,000)
Fiscal Year 2020: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2019: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2018: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Keywords分位点回帰 / マーケティング / マーケティング・リサーチ
Outline of Final Research Achievements

The purpose of this study is to understand consumers more deeply and to obtain suggestions for marketing strategies by applying quantile regression to marketing data. In the analysis using actual data, quantile regression was applied to the measurement of advertising effectiveness, the selection of effective marketing variables, and the causal model of customer satisfaction. In the application to the measurement of advertising effectiveness, there were cases in which advertisements that were judged to be ineffective in the ordinary regression analysis were found to be effective in the upper quartile. In the application to variable selection, it was shown that the variables selected as explanatory variables for the model differed depending on the quantile. In the application to the customer satisfaction model, the coefficients differed depending on the quantile, indicating that factors affecting customer satisfaction may differ between customers with high and low satisfaction levels.

Academic Significance and Societal Importance of the Research Achievements

分位点回帰は経済学で広く応用されている分析方法で,目的変数の条件付き分位点を推定することができる。その有用性にもかかわらず,マーケティングではほとんど利用されていない。本研究では分位点回帰をマーケティングデータに適用することで対象を通常の回帰分析よりも詳細に理解した。同じマーケティング変数を受けていても購入数量が多い優良顧客を理解するはマーケティング施策の改善につながる。

Report

(7 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • Research Products

    (6 results)

All 2022 2021 2020 2019

All Journal Article (1 results) Presentation (5 results) (of which Int'l Joint Research: 3 results)

  • [Journal Article] 分位点回帰によるマーケティングの効果測定2020

    • Author(s)
      長谷川翔平
    • Journal Title

      経営志林

      Volume: 57 Pages: 27-33

    • Related Report
      2019 Research-status Report
  • [Presentation] Analyzing Users’ Posting Behavior on a Q&A Website Using LDA and BTYD Model2022

    • Author(s)
      Shohei Hasegawa
    • Organizer
      ISMS Marketing Science Conference 2022
    • Related Report
      2022 Research-status Report
    • Int'l Joint Research
  • [Presentation] BTYDモデルによるQ&Aサイトの投稿行動の分析2022

    • Author(s)
      長谷川翔平
    • Organizer
      日本マーケティング・サイエンス学会 第111回研究大会
    • Related Report
      2022 Research-status Report
  • [Presentation] Understand Advertising Effectiveness Using Quantile Regression2021

    • Author(s)
      Shohei Hasegawa
    • Organizer
      INFORMS Marketing Science Conference 2021
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research
  • [Presentation] 分位点回帰による顧客満足度因果モデルの推定2019

    • Author(s)
      長谷川翔平
    • Organizer
      2019年度統計関連学会連合大会
    • Related Report
      2019 Research-status Report
  • [Presentation] Estimating the Causality of Customer Satisfaction using a Quantile Regression Model2019

    • Author(s)
      Shohei Hasegawa
    • Organizer
      International Workshop on Marketing and Data Science
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research

URL: 

Published: 2018-04-23   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi