• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

A computational approach that evaluates the value calculation process and the choice process in decision making

Research Project

Project/Area Number 18K13366
Research Category

Grant-in-Aid for Early-Career Scientists

Allocation TypeMulti-year Fund
Review Section Basic Section 10040:Experimental psychology-related
Research InstitutionSenshu University (2020)
Nagoya University (2018-2019)

Principal Investigator

Toyama Asako  専修大学, 文学研究科, 特別研究員 (10816549)

Project Period (FY) 2018-04-01 – 2021-03-31
Project Status Completed (Fiscal Year 2020)
Budget Amount *help
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2020: ¥1,690,000 (Direct Cost: ¥1,300,000、Indirect Cost: ¥390,000)
Fiscal Year 2019: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2018: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Keywords計算論モデル / 強化学習モデル / 忘却過程 / 固執性 / 精神疾患 / シミュレーション / パラメータ推定のバイアス / 意思決定 / モデルフリー学習 / モデルベース学習 / 固執
Outline of Final Research Achievements

Decision-making is composed of a value calculation process that calculates the value of available options and a choice process that favors an option. In recent years, studies have characterized mental illness and personalities using model parameters. In this study, we pointed out the problems with the conventionally used reinforcement learning models and clarified the possibility that the model parameter estimation was biased due to model misspecification, which affected the conclusion of studies. In addition, we collected large-scale data using crowdsourcing and newly characterized mental illness with the proposed model.

Academic Significance and Societal Importance of the Research Achievements

本研究は従来使われてきた強化学習モデルのパラメータが,意思決定過程に関して誤った結論を導いていた可能性を指摘した。そのため,本研究の中で提案している新しいモデルを使うことで,これまでの理解が覆り,新たな人間像が浮かび上がってくる可能性がある。さらに,新しく提案したモデルのパラメータが抑うつや不安などの程度と対応していることが示唆された。そのため,近年世界的に推進されている計算論的精神医学に貢献し,精神疾患の診断や予測に役立つことが期待される。

Report

(4 results)
  • 2020 Annual Research Report   Final Research Report ( PDF )
  • 2019 Research-status Report
  • 2018 Research-status Report
  • Research Products

    (8 results)

All 2021 2020 2019

All Journal Article (3 results) (of which Peer Reviewed: 3 results,  Open Access: 3 results) Presentation (5 results) (of which Int'l Joint Research: 2 results)

  • [Journal Article] Revisiting the importance of model fitting for model-based fMRI: It does matter in computational psychiatry2021

    • Author(s)
      Katahira Kentaro, Toyama Asako
    • Journal Title

      PLOS Computational Biology

      Volume: 17 Issue: 2 Pages: e1008738-e1008738

    • DOI

      10.1371/journal.pcbi.1008738

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Reinforcement learning with parsimonious computation and a forgetting process2019

    • Author(s)
      Toyama Asako, Katahira Kentaro, Ohira Hideki
    • Journal Title

      Frontiers in Human Neuroscience

      Volume: 13 Pages: 153-153

    • DOI

      10.3389/fnhum.2019.00153

    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Biases in estimating the balance between model-free and model-based learning systems due to model misspecification2019

    • Author(s)
      Toyama Asako, Katahira Kentaro, Ohira Hideki
    • Journal Title

      Journal of Mathematical Psychology

      Volume: 91 Pages: 88-102

    • DOI

      10.1016/j.jmp.2019.03.007

    • Related Report
      2018 Research-status Report
    • Peer Reviewed / Open Access
  • [Presentation] ATTENTION BIAS TO AFFECTIVE OUTCOMES2020

    • Author(s)
      Asako Toyama, Kentaro Katahira Hideki Ohira
    • Organizer
      The 2020 SAS Annual Conference
    • Related Report
      2020 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Forgetting Process in Model-Free and Model-Based Reinforcement Learning.2019

    • Author(s)
      Toyama, A., Katahira, K., & Ohira, H.
    • Organizer
      The 4th Multi-disciplinary Conference on Reinforcement Learning and Decision Making
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research
  • [Presentation] モデルベース意思決定を特徴づける計算論モデルの 提案 モデルパラメータを用いた個人差の検討2019

    • Author(s)
      遠山朝子
    • Organizer
      日本心理学会第81回大会
    • Related Report
      2019 Research-status Report
  • [Presentation] 忘却過程のある強化学習モデルの提案2019

    • Author(s)
      遠山朝子
    • Organizer
      第18回東海若手実験心理学研究会
    • Related Report
      2019 Research-status Report
  • [Presentation] 忘却過程を含む強化学習モデルを用いたモデルフリー・モデルベースシステム比重の推定2019

    • Author(s)
      遠山朝子
    • Organizer
      第22回計算論的精神医学コロキウム
    • Related Report
      2019 Research-status Report

URL: 

Published: 2018-04-23   Modified: 2022-01-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi