• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

極小モデル理論に現れる特異点の理論

Research Project

Project/Area Number 18K13384
Research Category

Grant-in-Aid for Early-Career Scientists

Allocation TypeMulti-year Fund
Review Section Basic Section 11010:Algebra-related
Research InstitutionThe University of Tokyo

Principal Investigator

中村 勇哉  東京大学, 大学院数理科学研究科, 助教 (20780034)

Project Period (FY) 2018-04-01 – 2025-03-31
Project Status Granted (Fiscal Year 2023)
Budget Amount *help
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2021: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2020: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2019: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2018: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Keywords極小モデル理論 / ACC予想 / LSC予想 / PIA予想 / 特異点 / 極小ログ食い違い係数 / MLD / 双有理幾何 / 有理点問題 / ファノ多様体 / 特異点理論 / フリップの停止問題
Outline of Annual Research Achievements

今年度は、昨年度に引き続き、商特異点の極小ログ食い違い係数について研究した。超商特異点とは超曲面特異点の有限商となっているような特異点のクラスである。極小ログ食い違い係数に関する予想としてLSC(lower semi-continuity)予想とPIA(precise inversion of adjunction)予想があり、極小ログ食い違い係数を研究するモチベーションとなっている。

昨年度までの研究において、群作用が線形である場合に、PIA予想とLSC予想の成立を証明した。また、さらにそれを群作用が線形と限らない場合に証明している。いずれの場合も、超曲面の定義多項式が、群作用で不変な場合を扱っていた。本年度は、柴田康介氏との共同研究により、超曲面の定義多項式が群作用で不変とは限らない場合(semi-invariantの場合)を研究し、その場合のPIA予想とLSC予想の成立を証明した。このカテゴリーは、3次元端末的特異点を含んでいるため、より自然なクラスであり、応用も期待できる。また、Cartierとは限らないWeil因子へのPIA予想を証明した初めてのカテゴリーである点でも重要だと考えている。

昨年度までの研究と同様に、証明には弧空間の理論を用いている。今回の新しい点は、semi-invariantな元を扱うために、新しい不変量を導入している。この不変量が、極小ログ食い違い係数を弧空間で表示する際に重要となっている。

Current Status of Research Progress
Current Status of Research Progress

2: Research has progressed on the whole more than it was originally planned.

Reason

本研究では、超曲面特異点の有限商となっているような特異点のクラスを扱っている。昨年度までに、一番重要なinvariantケースについて理論を完成させた。今年度は、残っていたsemi-invariantケースについて理論を完成することができた。

Strategy for Future Research Activity

超曲面特異点の有限商となっているような特異点のクラスをこれまでの研究で扱っている。超曲面特異点に限らない一般の商多様体について統一的に扱うことを一つの目標としている。また、これまでの研究では、証明に必要となる特異点の仮定をつけている。この仮定を外すことも目標となっている。

Report

(6 results)
  • 2023 Research-status Report
  • 2022 Research-status Report
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • Research Products

    (38 results)

All 2024 2023 2022 2021 2020 2019 2018

All Journal Article (10 results) (of which Int'l Joint Research: 2 results,  Peer Reviewed: 10 results,  Open Access: 4 results) Presentation (28 results) (of which Int'l Joint Research: 20 results,  Invited: 27 results)

  • [Journal Article] On generalized minimal log discrepancy2024

    • Author(s)
      CHEN Weichung、GONGYO Yoshinori、NAKAMURA Yusuke
    • Journal Title

      Journal of the Mathematical Society of Japan

      Volume: 76 Issue: 2 Pages: 393-449

    • DOI

      10.2969/jmsj/90119011

    • ISSN
      0025-5645, 1881-1167, 1881-2333
    • Related Report
      2023 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Upper bounds of orders of automorphism groups of leafless metric graphs2023

    • Author(s)
      Nakamura Yusuke、Song JuAe
    • Journal Title

      AKCE International Journal of Graphs and Combinatorics

      Volume: 21 Issue: 1 Pages: 71-76

    • DOI

      10.1080/09728600.2023.2251042

    • Related Report
      2023 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Inversion of adjunction for quotient singularities2022

    • Author(s)
      Nakamura Yusuke、Shibata Kohsuke
    • Journal Title

      Algebraic Geometry

      Volume: 9 Pages: 214-251

    • DOI

      10.14231/ag-2022-007

    • Related Report
      2021 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Coordination sequences of crystals are of quasi-polynomial type2021

    • Author(s)
      Nakamura Yusuke、Sakamoto Ryotaro、Mase Takafumi、Nakagawa Junichi
    • Journal Title

      Acta Crystallographica Section A Foundations and Advances

      Volume: 77 Issue: 2 Pages: 138-148

    • DOI

      10.1107/s2053273320016769

    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Minimal model program for log canonical threefolds in positive characteristic2020

    • Author(s)
      Hashizume Kenta、Nakamura Yusuke、Tanaka Hiromu
    • Journal Title

      Mathematical Research Letters

      Volume: 27 Issue: 4 Pages: 1003-1054

    • DOI

      10.4310/mrl.2020.v27.n4.a3

    • Related Report
      2020 Research-status Report
    • Peer Reviewed
  • [Journal Article] Dual complex of log Fano pairs and its application to Witt vector cohomology2020

    • Author(s)
      Yusuke Nakamura
    • Journal Title

      Int. Math. Res. Not. IMRN

      Volume: - Issue: 13 Pages: 9802-9833

    • DOI

      10.1093/imrn/rnz356

    • Related Report
      2019 Research-status Report
    • Peer Reviewed
  • [Journal Article] A Witt Nadel vanishing theorem for threefolds2020

    • Author(s)
      Yusuke Nakamura, Hiromu Tanaka
    • Journal Title

      Compos. Math.

      Volume: 156 Issue: 3 Pages: 435-475

    • DOI

      10.1112/s0010437x1900770x

    • Related Report
      2019 Research-status Report
    • Peer Reviewed
  • [Journal Article] Rational points on log Fano threefolds over a finite field2019

    • Author(s)
      Yoshinori Gongyo, Yusuke Nakamura, Hiromu Tanaka
    • Journal Title

      J. Eur. Math. Soc. (JEMS)

      Volume: 21 Issue: 12 Pages: 3759-3795

    • DOI

      10.4171/jems/913

    • Related Report
      2019 Research-status Report
    • Peer Reviewed
  • [Journal Article] Minimal model program for log canonical threefolds in positive characteristic2019

    • Author(s)
      Kenta Hashizume, Yusuke Nakamura, Hiromu Tanaka
    • Journal Title

      Mathematical Research Letters

      Volume: 未定

    • Related Report
      2018 Research-status Report
    • Peer Reviewed
  • [Journal Article] A boundedness conjecture for minimal log discrepancies on a fixed germ2018

    • Author(s)
      Mircea Mustata, Yusuke Nakamura
    • Journal Title

      Contemporary Mathematics

      Volume: 712 Pages: 287-306

    • DOI

      10.1090/conm/712/14351

    • Related Report
      2018 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Presentation] Minimal log discrepancies of quotient singularities2023

    • Author(s)
      中村勇哉
    • Organizer
      FRG Special Month in Ann Arbor
    • Related Report
      2023 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Ehrhart theory of periodic graphs2023

    • Author(s)
      中村勇哉
    • Organizer
      FRG Special Month in Ann Arbor
    • Related Report
      2023 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Ehrhart theory on periodic graphs2023

    • Author(s)
      中村 勇哉
    • Organizer
      九州大学代数学セミナー
    • Related Report
      2023 Research-status Report
    • Invited
  • [Presentation] Minimal log discrepancies of quotient singularities2023

    • Author(s)
      中村 勇哉
    • Organizer
      Recent Developments in Algebraic Geometry, Arithmetic and Dynamics Part 2
    • Related Report
      2023 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Shokurov’s index conjecture and PIA conjecture for quotient singularities2023

    • Author(s)
      中村 勇哉
    • Organizer
      城崎代数幾何学シンポジウム2023
    • Related Report
      2023 Research-status Report
    • Invited
  • [Presentation] Ehrhart theory of periodic graphs2023

    • Author(s)
      中村 勇哉
    • Organizer
      The 1st Algebraic geometry Atami symposium
    • Related Report
      2022 Research-status Report
    • Int'l Joint Research
  • [Presentation] Toward an Ehrhart theory of periodic graphs2023

    • Author(s)
      中村 勇哉
    • Organizer
      Order seminar in Osaka
    • Related Report
      2022 Research-status Report
    • Invited
  • [Presentation] Inversion of adjunction for quotient singularities2022

    • Author(s)
      中村 勇哉
    • Organizer
      JAMI Conference 2022: Higher Dimensional Algebraic Geometry
    • Related Report
      2022 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Minimal log discrepancies of quotient singularities2022

    • Author(s)
      中村 勇哉
    • Organizer
      Algebraic Geometry Seminar
    • Related Report
      2022 Research-status Report
    • Invited
  • [Presentation] Minimal log discrepancies of quotient singularities2022

    • Author(s)
      中村 勇哉
    • Organizer
      代数学シンポジウム2022
    • Related Report
      2022 Research-status Report
    • Invited
  • [Presentation] Minimal log discrepancies of quotient singularities2022

    • Author(s)
      中村 勇哉
    • Organizer
      Birational Geometry Workshop at BIMSA
    • Related Report
      2022 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Minimal log discrepancies of quotient singularities2021

    • Author(s)
      中村勇哉
    • Organizer
      Interactions of new trends in Algebraic Geometry and singularities
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Inversion of adjunction for quotient singularities2021

    • Author(s)
      中村勇哉
    • Organizer
      Algebraic Geometry and Related Topics
    • Related Report
      2021 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Inversion of adjunction for quotient singularities2021

    • Author(s)
      中村勇哉
    • Organizer
      Fudan-SCMS AG Seminar
    • Related Report
      2020 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Inversion of adjunction for quotient singularities2021

    • Author(s)
      中村勇哉
    • Organizer
      Zoom Algebraic Geometry Seminar
    • Related Report
      2020 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Inversion of adjunction for quotient singularities2020

    • Author(s)
      中村勇哉
    • Organizer
      日大特異点セミナー
    • Related Report
      2020 Research-status Report
    • Invited
  • [Presentation] Rational point problem on singular Fano varieties2020

    • Author(s)
      Yusuke Nakamura
    • Organizer
      Singularities and Arithmetics
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Rational point problem on singular Fano varieties2019

    • Author(s)
      Yusuke Nakamura
    • Organizer
      Tokyo Denki University Mathematics Seminar
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] Rational point problem on singular Fano varieties2019

    • Author(s)
      Yusuke Nakamura
    • Organizer
      Number Theory/Algebraic Geometry Seminar at Boston College
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Rational point problem on singular Fano varieties2019

    • Author(s)
      Yusuke Nakamura
    • Organizer
      Algebraic Geometry Seminar at Princeton University
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Rational point problem on singular Fano varieties2019

    • Author(s)
      Yusuke Nakamura
    • Organizer
      Algebraic Geometry Seminar at Michigan University
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] A rational point problem on Fano varieties2019

    • Author(s)
      Yusuke Nakamura
    • Organizer
      Higher Dimensional Arithmetic Geometry
    • Related Report
      2018 Research-status Report
    • Invited
  • [Presentation] A rational point problem on Fano varieties2018

    • Author(s)
      Yusuke Nakamura
    • Organizer
      Tianyuan Advanced Seminar on the Moduli Spaces in Algebraic Geometry
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] A vanishing theorem of Witt-vector cohomology of Ambro-Fujino type2018

    • Author(s)
      Yusuke Nakamura
    • Organizer
      Differential, Algebraic and Topological Methods in Complex Algebraic Geometry
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] A vanishing theorem of Witt-vector cohomology of Ambro-Fujino type2018

    • Author(s)
      Yusuke Nakamura
    • Organizer
      Algebraic Geometry in East Asia
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Dual complex of Fano varieties and an application to vanishing of Witt vector cohomology2018

    • Author(s)
      Yusuke Nakamura
    • Organizer
      Workshop on Birational Geometry and Related Topics
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] A Rational Point Problem on Fano Varieties2018

    • Author(s)
      Yusuke Nakamura
    • Organizer
      Colloquium
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Dual Complex of Fano Varieties and an Application to Vanishing of Witt Vector Cohomology2018

    • Author(s)
      Yusuke Nakamura
    • Organizer
      Algebraic Geometry Seminar
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited

URL: 

Published: 2018-04-23   Modified: 2024-12-25  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi