• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Representation theory of affine Yangians and integrable systems

Research Project

Project/Area Number 18K13390
Research Category

Grant-in-Aid for Early-Career Scientists

Allocation TypeMulti-year Fund
Review Section Basic Section 11010:Algebra-related
Research InstitutionChiba University (2020)
Kobe University (2018-2019)

Principal Investigator

Kodera Ryosuke  千葉大学, 大学院理学研究院, 准教授 (20634512)

Project Period (FY) 2018-04-01 – 2021-03-31
Project Status Completed (Fiscal Year 2020)
Budget Amount *help
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2020: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2019: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Fiscal Year 2018: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Keywordsアファインヤンギアン / 表現論 / 可積分系 / W代数 / トロイダルLie代数 / シフト量子アファイン代数 / Weyl加群 / ブレイド群 / evaluation写像
Outline of Final Research Achievements

We studied the structure theory and the representation theory of affine Yangians. We also studied the representation theory of related algebras.
For the affine Yangians, we studied properties of the evaluation map, and constructed algebra homomorphisms to affine W-algebras of rectangular type by composing it with the coproduct. They are significant results. Since the affine W-algebras are closely related to integrable systems, it is expected that we can apply the representation theory of the affine Yangians to the study of the integrable systems via the homomorphisms.
The following results were obtained as the studies on related algebras. We derived the characters of the level 1 Weyl modules of toroidal Lie algebras. We classified the finite-dimensional irreducible representations of (q,Q)-current algebras when q is not a root of unity.

Academic Significance and Societal Importance of the Research Achievements

本研究によってアファインヤンギアンの構造論の理解が進んだことに伴って,長方形型アファインW代数との関係が明らかになった.特に,アファインヤンギアンのテンソル積表現と長方形型アファインW代数の放物誘導が対応することを示したことで,テンソル積表現の研究の重要性が再確認された.この成果は,今後可積分系の研究への応用を考えるうえでも重要だと考えている.
トロイダルLie代数のWeyl加群の研究は,アファインヤンギアンの表現論の理解のために役立つことが期待されるとともに,それ自体が特殊函数論的な観点からも興味深い.本研究の成果はWeyl加群の研究の第一歩となるものである.

Report

(4 results)
  • 2020 Annual Research Report   Final Research Report ( PDF )
  • 2019 Research-status Report
  • 2018 Research-status Report
  • Research Products

    (22 results)

All 2021 2020 2019 2018 Other

All Journal Article (9 results) (of which Int'l Joint Research: 2 results,  Peer Reviewed: 9 results) Presentation (10 results) (of which Int'l Joint Research: 1 results,  Invited: 5 results) Remarks (3 results)

  • [Journal Article] Finite dimensional simple modules of (q,Q)-current algebras2021

    • Author(s)
      Ryosuke Kodera and Kentaro Wada
    • Journal Title

      Journal of Algebra

      Volume: 570 Pages: 470-530

    • DOI

      10.1016/j.jalgebra.2020.11.019

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed
  • [Journal Article] On Guay's evaluation map for affine Yangians2021

    • Author(s)
      Ryosuke Kodera
    • Journal Title

      Algebras and Representation Theory

      Volume: 24 Issue: 1 Pages: 253-267

    • DOI

      10.1007/s10468-019-09945-w

    • NAID

      120006861839

    • Related Report
      2020 Annual Research Report 2019 Research-status Report
    • Peer Reviewed
  • [Journal Article] Level one Weyl modules for toroidal Lie algebras2020

    • Author(s)
      Ryosuke Kodera
    • Journal Title

      Letters in Mathematical Physics

      Volume: 110 Issue: 11 Pages: 3053-3080

    • DOI

      10.1007/s11005-020-01321-w

    • NAID

      130008005116

    • Related Report
      2020 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Appendix to Syu Kato and Sergey Loktev: A Weyl module stratification of integrable representations2019

    • Author(s)
      Ryosuke Kodera
    • Journal Title

      Communications in Mathematical Physics

      Volume: 368 Issue: 1 Pages: 113-141

    • DOI

      10.1007/s00220-019-03327-5

    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Coulomb branches of $3d$ $\mathcal{N}=4$ quiver gauge theories and slices in the affine Grassmannian2019

    • Author(s)
      Braverman Alexander、Finkelberg Michael、Nakajima Hiraku
    • Journal Title

      Advances in Theoretical and Mathematical Physics

      Volume: 23 Issue: 1 Pages: 75-166

    • DOI

      10.4310/atmp.2019.v23.n1.a3

    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Affine Yangian action on the Fock space2019

    • Author(s)
      Ryosuke Kodera
    • Journal Title

      Publications of the Research Institute for Mathematical Sciences

      Volume: 55 Issue: 1 Pages: 189-234

    • DOI

      10.4171/prims/55-1-6

    • Related Report
      2018 Research-status Report
    • Peer Reviewed
  • [Journal Article] Braid group action on affine Yangian2019

    • Author(s)
      Ryosuke Kodera
    • Journal Title

      SIGMA Symmetry, Integrability and Geometry: Methods and Applications

      Volume: 15 Pages: 1-28

    • DOI

      10.3842/sigma.2019.020

    • Related Report
      2018 Research-status Report
    • Peer Reviewed
  • [Journal Article] Higher level Fock spaces and affine Yangian2018

    • Author(s)
      Ryosuke Kodera
    • Journal Title

      Transformation Groups

      Volume: 23 Issue: 4 Pages: 939-962

    • DOI

      10.1007/s00031-018-9491-8

    • Related Report
      2018 Research-status Report
    • Peer Reviewed
  • [Journal Article] Quantized Coulomb branches of Jordan quiver gauge theories and cyclotomic rational Cherednik algebras2018

    • Author(s)
      Ryosuke Kodera, Hiraku Nakajima
    • Journal Title

      String-Math 2016, Proceedings of Symposia in Pure Mathematics

      Volume: 98 Pages: 49-78

    • DOI

      10.1090/pspum/098/03

    • Related Report
      2018 Research-status Report
    • Peer Reviewed
  • [Presentation] Affine Yangians and rectangular W-algebras2020

    • Author(s)
      小寺諒介
    • Organizer
      表現論セミナー
    • Related Report
      2020 Annual Research Report
    • Invited
  • [Presentation] Level one Weyl modules for toroidal Lie algebras2019

    • Author(s)
      小寺諒介
    • Organizer
      Algebraic Lie Theory and Representation Theory 2019
    • Related Report
      2019 Research-status Report
  • [Presentation] Affine Yangians and rectangular W-algebras of type A2019

    • Author(s)
      Ryosuke Kodera
    • Organizer
      Workshop on 3d Mirror Symmetry and AGT Conjecture
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Level one Weyl modules for toroidal Lie algebras2019

    • Author(s)
      小寺諒介
    • Organizer
      表現論シンポジウム
    • Related Report
      2019 Research-status Report
  • [Presentation] Level one Weyl modules for toroidal Lie algebras2019

    • Author(s)
      小寺諒介
    • Organizer
      Arithmetic Geometry and Representation Theory
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] (q,Q)-current algebras and shifted quantum affine algebas2019

    • Author(s)
      小寺諒介
    • Organizer
      南大阪代数セミナー
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] Braid group action on affine Yangian2018

    • Author(s)
      小寺諒介
    • Organizer
      Algebraic Lie Theory and Representation Theory 2018
    • Related Report
      2018 Research-status Report
  • [Presentation] On Guay's evaluation map for affine Yangians2018

    • Author(s)
      小寺諒介
    • Organizer
      日本数学会2018年度秋季総合分科会
    • Related Report
      2018 Research-status Report
  • [Presentation] Braid group action on affine Yangian2018

    • Author(s)
      小寺諒介
    • Organizer
      RIMS共同研究(公開型)「組合せ論的表現論の諸相」
    • Related Report
      2018 Research-status Report
  • [Presentation] Affine Yangians and integrable systems2018

    • Author(s)
      小寺諒介
    • Organizer
      日本数学会2019年度年会 無限可積分系セッション特別講演
    • Related Report
      2018 Research-status Report
    • Invited
  • [Remarks]

    • URL

      http://www.math.s.chiba-u.ac.jp/~kodera/index.html

    • Related Report
      2020 Annual Research Report
  • [Remarks] Ryosuke Kodera

    • URL

      http://www2.kobe-u.ac.jp/~kryosuke/index.html

    • Related Report
      2019 Research-status Report 2018 Research-status Report
  • [Remarks] Kodera Ryosuke

    • URL

      http://www2.kobe-u.ac.jp/~kryosuke/index-j.html

    • Related Report
      2019 Research-status Report 2018 Research-status Report

URL: 

Published: 2018-04-23   Modified: 2022-01-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi