• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Relative unipotent completion of fundamental groups of modular curves and non-commutative motives

Research Project

Project/Area Number 18K13391
Research Category

Grant-in-Aid for Early-Career Scientists

Allocation TypeMulti-year Fund
Review Section Basic Section 11010:Algebra-related
Research InstitutionKyoto University

Principal Investigator

Sakugawa Kenji  京都大学, 数理解析研究所, 特別研究員(PD) (80784214)

Project Period (FY) 2018-04-01 – 2020-03-31
Project Status Completed (Fiscal Year 2019)
Budget Amount *help
¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2019: ¥520,000 (Direct Cost: ¥400,000、Indirect Cost: ¥120,000)
Fiscal Year 2018: ¥520,000 (Direct Cost: ¥400,000、Indirect Cost: ¥120,000)
Keywordsモジュラー曲線 / 相対的冪単基本群 / 混合楕円モチーフ / 混合テイトモチーフ / 数論的基本群 / 相対的冪単完備化 / 非可換モチーフ
Outline of Final Research Achievements

The objectives of this study are to (1) give a motivic consturuction of the relative completion of the topological fundamental groups of modular curves (2) Determine the concrete structure of the maximal mixed Tate quotient of the motivic relative completion constructed in (1) (3) Using the results of (2), we are going to study the Galois representations associated with elliptic newforms.
For (1), we have a somewhat satisfactory construction in the category of Arapura's motivic local systems. In the case (2), the problem was more difficult than expected and no result was obtained. On the other hand, some results about computations of the associated Galois representations with newforms were obtained without conditions.

Academic Significance and Societal Importance of the Research Achievements

DeligneとGoncharovのモチーフ的冪単基本群の構成は, その後の混合テイトモチーフの研究に於いて欠かせない基本的な道具となっている. 本研究の結果はその結果の楕円的な一般化であり, 楕円曲線は現在様々な場所で現れる基本的数学的対象であることから, 今後様々な研究のための基本的道具となると思われる. また, 保型形式に対応するガロワ表現を係数に持つガロワコホモロジーは保型形式の基本的な不変量である. 保型形式も楕円曲線同様に様々な場面で現れる数学的対象であり, 従ってその基本的な対象の不変量が部分的にでも計算できたことは今後の研究の大切なステップとなるかと思われる.

Report

(3 results)
  • 2019 Annual Research Report   Final Research Report ( PDF )
  • 2018 Research-status Report
  • Research Products

    (9 results)

All 2020 2019 2018

All Journal Article (2 results) (of which Peer Reviewed: 2 results) Presentation (7 results) (of which Int'l Joint Research: 5 results,  Invited: 6 results)

  • [Journal Article] GENERALIZED BEILINSON ELEMENTS AND GENERALIZED SOULE CHARACTERS2020

    • Author(s)
      SAKUGAWA KENJI
    • Journal Title

      Canadian Journal of Mathematics

      Volume: - Issue: 2 Pages: 542-571

    • DOI

      10.4153/s0008414x20000073

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed
  • [Journal Article] On modified finite polylogarithms2019

    • Author(s)
      Sakugawa Kenji
    • Journal Title

      Journal of Number Theory

      Volume: 201 Pages: 190-205

    • DOI

      10.1016/j.jnt.2019.02.012

    • Related Report
      2018 Research-status Report
    • Peer Reviewed
  • [Presentation] Gealyゼータ元のレギュレータ公式について2020

    • Author(s)
      佐久川憲児
    • Organizer
      第13回ゼータ若手研究集会
    • Related Report
      2019 Annual Research Report
  • [Presentation] On mixed elliptic smooth Qp-sheaves over modular curves (in progress)2019

    • Author(s)
      Kenji Sakugawa
    • Organizer
      Multiple zeta values and related toplics
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] On Jannsen's conjecture for modular forms2019

    • Author(s)
      Kenji Sakugawa
    • Organizer
      The 8th East Asia Number Theory Conference
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] モジュラー曲線の重みつき p 基本群の部分有理構造について2019

    • Author(s)
      佐久川憲児
    • Organizer
      早稲田大学整数論セミナー
    • Related Report
      2018 Research-status Report
    • Invited
  • [Presentation] On mixed elliptic motives over modular curves2018

    • Author(s)
      Kenji Sakugawa
    • Organizer
      Mini-Workshop: Elliptic Multiple Zeta Values and Mixed Elliptic Motives
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] On relative fundamental groupoids of modular curves2018

    • Author(s)
      Kenji Sakugawa
    • Organizer
      the 4th KTGU Mathematics Workshop for Young Researchers
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] On relative fundamental groupoids of modular curves2018

    • Author(s)
      Kenji Sakugawa
    • Organizer
      Taiwan-Japan Joint Workshop on Multiple Zeta Values
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited

URL: 

Published: 2018-04-23   Modified: 2021-02-19  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi