• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Geometric structure of Weil-Petersson metric on infinite dimensional Teichmuller space

Research Project

Project/Area Number 18K13410
Research Category

Grant-in-Aid for Early-Career Scientists

Allocation TypeMulti-year Fund
Review Section Basic Section 11020:Geometry-related
Research InstitutionYamaguchi University

Principal Investigator

Yanagishita Masahiro  山口大学, 大学院創成科学研究科, 講師 (60781333)

Project Period (FY) 2018-04-01 – 2022-03-31
Project Status Completed (Fiscal Year 2021)
Budget Amount *help
¥2,340,000 (Direct Cost: ¥1,800,000、Indirect Cost: ¥540,000)
Fiscal Year 2019: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2018: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Keywordsタイヒミュラー空間 / 擬等角写像 / リーマン面 / Weil-Petersson計量
Outline of Final Research Achievements

This research is aimed at considering whether the Weil-Petersson metric on the square Teichmuller space of non-compact Riemann surfaces, which is a generalization on that of compact ones, has the same properties as the compact case.
The researcher proved that the Weil-Petersson distance induced by the Weil-Petersson metric is non-complete except for the case of a few Riemann surfaces, which is originally showed in the case of compact Riemann surfaces.

Academic Significance and Societal Importance of the Research Achievements

非コンパクトリーマン面のタイヒミュラー空間の幾何学的構造はコンパクトリーマン面の場合とは異なり、カオス的な様相を垣間見せる。その主な原因は非コンパクトリーマン面には理想境界と呼ばれる果ての無い部分を持つことにある。
コンパクトリーマン面の場合には、Weil-Petersson計量が非完備であることからその完備化を考えることができ、その境界成分にはノードと呼ばれる結節点を持つリーマン面が現れる。本研究成果により、非コンパクトな場合でもその完備化の境界成分に何が現れるかを考察することが可能となった。

Report

(5 results)
  • 2021 Annual Research Report   Final Research Report ( PDF )
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • Research Products

    (4 results)

All 2022 2021 2020

All Journal Article (1 results) (of which Peer Reviewed: 1 results) Presentation (3 results) (of which Invited: 2 results)

  • [Journal Article] Completeness of p-Weil-Petersson distance2022

    • Author(s)
      Masahiro Yanagishita
    • Journal Title

      Comformal Geometry and Dynamics

      Volume: -

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed
  • [Presentation] Complex analytic structure of the p-integrable Teichmuller space2022

    • Author(s)
      柳下 剛広
    • Organizer
      研究集会「Riemann surfaces and related topics」
    • Related Report
      2021 Annual Research Report
    • Invited
  • [Presentation] Completeness of p-Weil-Petersson distance2021

    • Author(s)
      Masahiro Yanagishita
    • Organizer
      Geometry of discrete groups and hyperbolic spaces
    • Related Report
      2021 Annual Research Report
    • Invited
  • [Presentation] 2乗可積分タイヒミュラー空間上のWeil-Petersson計量の完備性について2020

    • Author(s)
      柳下剛広
    • Organizer
      2019年度「リーマン面・不連続群論」研究集会
    • Related Report
      2019 Research-status Report

URL: 

Published: 2018-04-23   Modified: 2023-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi