Study of metric measure spaces with curvature-dimension conditions and its applications to Riemannian geometry
Project/Area Number |
18K13412
|
Research Category |
Grant-in-Aid for Early-Career Scientists
|
Allocation Type | Multi-year Fund |
Review Section |
Basic Section 11020:Geometry-related
|
Research Institution | Kumamoto University |
Principal Investigator |
Kitabeppu Yu 熊本大学, 大学院先端科学研究部(理), 准教授 (50728350)
|
Project Period (FY) |
2018-04-01 – 2023-03-31
|
Project Status |
Completed (Fiscal Year 2022)
|
Budget Amount *help |
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2021: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2020: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2019: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2018: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
|
Keywords | 熱流 / RCD 空間 / 曲率次元条件 / 非線形ラプラシアン / 最大直径定理 / Gromov-Hausdorff 収束 / Ricci 曲率 / リーマン的曲率次元条件 / Wasserstein 距離 / Symplectic toric 多様体 / リーマン幾何学 |
Outline of Final Research Achievements |
It is known that we can use much techniques of calculus on RCD spaces, which can be applied to wide class including collapsed manifolds. Roughly, we have the following two results: One is the Zhong-Yang type rigidity theorem for RCD spaces, and another is giving a definition of Ricci curvature on hypergraphs associated with the heat flow.
|
Academic Significance and Societal Importance of the Research Achievements |
ハイパーグラフはネットワークのモデルなどとしてよく使われており、特に近年ハイパーグラフ上の熱の伝わりかたに関する研究もよくされている。ハイパーグラフ上に熱流、正確にいえば非線形ラプラシアンから定まるレゾルベント、を用いた曲率の定義を与えたことで、今後ハイパーグラフ上の現実的な問題に関しても応用があると期待される。
|
Report
(6 results)
Research Products
(16 results)