The family of Hessenberg varieties and integrable systems
Project/Area Number |
18K13413
|
Research Category |
Grant-in-Aid for Early-Career Scientists
|
Allocation Type | Multi-year Fund |
Review Section |
Basic Section 11020:Geometry-related
|
Research Institution | Okayama University of Science (2020-2022) Osaka Prefecture University (2018-2019) |
Principal Investigator |
ABE Hiraku 岡山理科大学, 理学部, 講師 (00736499)
|
Project Period (FY) |
2018-04-01 – 2023-03-31
|
Project Status |
Completed (Fiscal Year 2022)
|
Budget Amount *help |
¥3,770,000 (Direct Cost: ¥2,900,000、Indirect Cost: ¥870,000)
Fiscal Year 2021: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2020: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2019: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2018: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
|
Keywords | 旗多様体 / ヘッセンバーグ多様体 / Peterson多様体 / 完全可積分系 / 弱Fano多様体 / コホモロジー環 / 特異点 / 正規性 / 基本関係式 / Schubert多様体 / 基底 / 正値性 / Hessenberg多様体 / Fano多様体 / Mishchenko-Fomenko多項式 / 戸田格子 / 可積分系 |
Outline of Final Research Achievements |
In this research project, we study geometric properties of Hessenberg varieties, centering on studying the connection between Hessenberg varieties and integrable systems. As one of the achievements, we proved that the family of Hessenberg varieties which are defined for a specific Hessenberg space admits a completely integrable system. Also, we determined a necessary and sufficient condition for a regular semisimple Hessenberg variety to be a (weak) Fano variety, and we determine the ring structure of the integral cohomology of Peterson variety, and we gave a geometric interpretation of Peterson Schubert calculus, and we determined a necessary and sufficient condition for a regular nilpotent Hessenberg variety to be a normal algebraic variety.
|
Academic Significance and Societal Importance of the Research Achievements |
ヘッセンバーグ多様体は比較的新しい研究対象であり,幾何学・表現論・組合せ論の新たな架け橋として近年活発に研究されている.これまではヘッセンバーグ多様体のトポロジーを中心に様々な研究が進められ,その幾何学は未知の部分が多かった.本研究課題はこの点に注目し,可積分系との関係を軸にヘッセンバーグ多様体の幾何学について研究を行ったものである. ヘッセンバーグ多様体については研究すべき問題が豊富に残っており,若手の研究者や大学院生でも挑戦できる問題も沢山ある.このようなテーマの基礎となる幾何学を研究し,その性質を明らかにすることは意義のあることと考えられる.
|
Report
(6 results)
Research Products
(27 results)