The study of fractional operator in Harmonic Analysis
Project/Area Number |
18K13434
|
Research Category |
Grant-in-Aid for Early-Career Scientists
|
Allocation Type | Multi-year Fund |
Review Section |
Basic Section 12010:Basic analysis-related
|
Research Institution | Fukushima National College of Technology |
Principal Investigator |
Takeshi Iida 福島工業高等専門学校, 一般教科, 准教授 (60633435)
|
Project Period (FY) |
2018-04-01 – 2021-03-31
|
Project Status |
Completed (Fiscal Year 2020)
|
Budget Amount *help |
¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2019: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2018: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
|
Keywords | 荷重理論 / Morrey空間 / Orlicz-Morrey空間 / Orlicz分数冪極大作用素 / 分数冪積分作用素 / 分数冪Orlicz極大作用素 / 多重線形分数冪積分作用素 / 多重線形分数冪Orlicz極大作用素 / Orlicz極大作用素 / 分数冪極大作用素 / 調和解析 / 分数冪Orlicz 極大作用素 / 関数空間 / 荷重Lebesgue空間 / 強有界性 / 弱有界性 / 分数冪作用素 |
Outline of Final Research Achievements |
There are three main research results:(1)We showed that the sufficient condition for the Orlicz-fractional maximal operators of the Hardy-Littlewood-Sobolev type inequality is also necessary. (2)We showed that the condition of (1) is also a sufficient condition of the Adams type inequality for the Orlicz-fractional maximal operator in Morrey space. (3)Based on (1) and (2) research results, we constructed the theory of the weighted norm inequalities of the Orlicz fractional maximal operator in the Orlicz-Morrey space, including the case of multilinear.
|
Academic Significance and Societal Importance of the Research Achievements |
2013年にOrlicz分数冪極大作用素に対するHardy-Littlewood-Sobolev型不等式が成り立つための十分条件が示されたが、本研究(1)によってそれが必要条件でもあることが示された。(1)の研究成果は、Orlicz分数冪極大作用素の多くの関数空間の有界性を議論する上で基礎理論であり、今後の研究の更なる発展が見込まれる。例えば(2)と(3)の研究はMorrey空間上のOrlicz分数冪極大作用素の有界性に対する(1)の発展的研究である。
|
Report
(4 results)
Research Products
(9 results)