• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Functional inequalities via a logarithmic transformation and its application to PDE

Research Project

Project/Area Number 18K13441
Research Category

Grant-in-Aid for Early-Career Scientists

Allocation TypeMulti-year Fund
Review Section Basic Section 12020:Mathematical analysis-related
Research InstitutionTohoku University (2019-2021)
Ehime University (2018)

Principal Investigator

IOKU NORISUKE  東北大学, 理学研究科, 准教授 (50624607)

Project Period (FY) 2018-04-01 – 2022-03-31
Project Status Completed (Fiscal Year 2021)
Budget Amount *help
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2020: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2019: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Fiscal Year 2018: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Keywords非線形スケール不変性 / 擬スケール不変性 / 自己相似性 / 半線形熱方程式 / 関数不等式 / 特異定常解 / 半線型熱方程式 / 一意性 / 凝スケール不変性 / q-対数関数 / 非一意性 / 最良定数 / スケール不変性 / 偏微分方程式
Outline of Final Research Achievements

Inspired by a relationship between Tsallis statics and Bolzmann statics, we proposed a scale invariant form of Sobolev inequalities which converges to the limiting case of Sobolev inequalities (Alvino's inequality). This result means that the critical problem can be approximated via a direct limiting procedure of a subcritical problem in the sense of scale invariant structure.
Furthermore, we concerned semilinear heat equations with a general nonlinearity and revealed by focusing a quasi scale invariance that an existence of a singular stationary solution, an optimal singularity of an initial data such that an instant blow-up occurs, the Fujita exponent for a general nonlinearity, a second exponent in the sense of a quasi scaling.

Academic Significance and Societal Importance of the Research Achievements

本研究では一貫して非線形問題のスケール不変構造に着目し,劣臨界・臨界関数不等式の橋渡しを与えるとともに,モデルケースである冪乗型非線形項に対して得られていた半線形熱方程式に対する結果を一般の非線形項に拡張した.スケール不変性の観点から非線形構造の主要部と剰余項を分ける方法が構築された点が意義深い.また,背後にTsallis, Bolzmann統計力学が潜むことから,関連諸分野への波及効果も期待できる.

Report

(5 results)
  • 2021 Annual Research Report   Final Research Report ( PDF )
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • Research Products

    (19 results)

All 2022 2021 2019 2018 Other

All Int'l Joint Research (5 results) Journal Article (5 results) (of which Int'l Joint Research: 2 results,  Peer Reviewed: 5 results,  Open Access: 1 results) Presentation (9 results) (of which Int'l Joint Research: 6 results,  Invited: 7 results)

  • [Int'l Joint Research] Milano University/Firenze University(イタリア)

    • Related Report
      2021 Annual Research Report
  • [Int'l Joint Research] Milano University(イタリア)

    • Related Report
      2020 Research-status Report
  • [Int'l Joint Research] University of Rajshahi(バングラデシュ)

    • Related Report
      2020 Research-status Report
  • [Int'l Joint Research] Milano University(イタリア)

    • Related Report
      2019 Research-status Report
  • [Int'l Joint Research] Milano University(イタリア)

    • Related Report
      2018 Research-status Report
  • [Journal Article] Global in time solvability for a semilinear heat equation without the self-similar structure2022

    • Author(s)
      Y. Fujishima and N. Ioku
    • Journal Title

      Partial Differential Equations and Applications

      Volume: 3 Issue: 2

    • DOI

      10.1007/s42985-022-00158-3

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Solvability of a semilinear heat equation via a quasi scale invariance2021

    • Author(s)
      Y. Fujishima,N. Ioku
    • Journal Title

      Geometric Properties for Parabolic and Elliptic PDE's,Springer Proceedings in Mathematics & Statistics

      Volume: 176

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed
  • [Journal Article] Well-posedness of the Cauchy problem for convection-diffusion equations in uniformly local Lebesgue spaces2021

    • Author(s)
      Md. R. Haque, N. Ioku, T. Ogawa, R. Sato
    • Journal Title

      Differential and Integral Equations

      Volume: 34

    • Related Report
      2020 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Non-uniqueness for a critical heat equation in two dimensions with singular data2019

    • Author(s)
      N. Ioku, B. Ruf, E. Terraneo
    • Journal Title

      Annales de l'Institut Henri Poincar\'e/Analyse Non Lin\'eaire

      Volume: 36

    • Related Report
      2019 Research-status Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Attainability of the best Sobolev constant in a ball2019

    • Author(s)
      N. Ioku
    • Journal Title

      Mathematische Annalen

      Volume: in press Issue: 1-2 Pages: 1-16

    • DOI

      10.1007/s00208-018-1776-7

    • Related Report
      2018 Research-status Report
    • Peer Reviewed
  • [Presentation] Attainability of the best Sobolev constant in a ball2021

    • Author(s)
      N. Ioku
    • Organizer
      the 8th European Congress of Mathematics, Geometric--functional inequalities and related topics
    • Related Report
      2021 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] Sobolev型不等式の最良定数と達成可能性2021

    • Author(s)
      猪奥倫左
    • Organizer
      作用素論セミナー
    • Related Report
      2021 Annual Research Report
  • [Presentation] Solvability of a semilineaer heat equation via quasi scale invariance2021

    • Author(s)
      猪奥倫左
    • Organizer
      非線形の諸問題
    • Related Report
      2021 Annual Research Report
  • [Presentation] Sobolev型不等式の最良定数と達成可能性2021

    • Author(s)
      猪奥倫左
    • Organizer
      日本数学会函数方程式論分科会 特別講演
    • Related Report
      2020 Research-status Report
    • Invited
  • [Presentation] Solvability of a semilinear heat equation via a quasi scale invariance'2019

    • Author(s)
      猪奥倫左
    • Organizer
      Variational analysis on critical problems of nonlinear partial differential equations
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Solvability of a semilinear heat equation via a quasi scale invariance2019

    • Author(s)
      猪奥倫左
    • Organizer
      2019 Taiwan Mathematical Society Annual Meeting
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Attainability of the best Sobolev constant in a ball2019

    • Author(s)
      猪奥倫左
    • Organizer
      Geometry and Analysis, Kyoto University
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Attainability of the best Sobolev constant in a ball2019

    • Author(s)
      猪奥倫左
    • Organizer
      VI Italian-Japanese Workshop, Geometric properties for parabolic and elliptic PDEs
    • Related Report
      2019 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Remark on a Sobolev type inequality in a ball2018

    • Author(s)
      N. Ioku
    • Organizer
      AIMS 2018
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited

URL: 

Published: 2018-04-23   Modified: 2023-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi