• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Analysis of resonant effects and geometric symmetry on nonlinear dispersive equations

Research Project

Project/Area Number 18K13442
Research Category

Grant-in-Aid for Early-Career Scientists

Allocation TypeMulti-year Fund
Review Section Basic Section 12020:Mathematical analysis-related
Research InstitutionSaga University

Principal Investigator

Kato Takamori  佐賀大学, 理工学部, 講師 (50620639)

Project Period (FY) 2018-04-01 – 2024-03-31
Project Status Completed (Fiscal Year 2023)
Budget Amount *help
¥3,900,000 (Direct Cost: ¥3,000,000、Indirect Cost: ¥900,000)
Fiscal Year 2021: ¥520,000 (Direct Cost: ¥400,000、Indirect Cost: ¥120,000)
Fiscal Year 2020: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2019: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2018: ¥1,430,000 (Direct Cost: ¥1,100,000、Indirect Cost: ¥330,000)
Keywords非線形分散型方程式 / 初期値問題 / 適切性 / 周期境界条件 / 無条件一意性 / 可積分系 / 分散型方程式 / 非線形 / 分散形方程式 / 調和解析
Outline of Final Research Achievements

We considered the Cauchy problem of fifth order KdV type equations on the one-dimensional torus. We proved the well-posedness and unconditional uniqueness. This result is optimal in the sense that the nonlinear terms can be defined as the distribution. The key of this study is how to deal with the resonant parts which cannot be regarded as the perturbation of the linearized solution. By symmetry of the equation, we found that the resonant parts are exactly localized and can be cancelled by some conserved quantities.
Moreover, we obtained the improved results of fifth order modified KdV type equations and third order Benjamin-Ono type equations on the torus.

Academic Significance and Societal Importance of the Research Achievements

本研究では、実際の物理現象を記述するモデルあるいはその近似モデルとなる偏微分方程式を扱う。実際の現象は様々な設定で考察されるが、数値計算を実行する上で周期境界条件は最も自然な設定である。そのため、周期境界条件下で偏微分方程式に対する適切性(解の一意存在及び初期値に関する連続依存性)及び非適切性を厳密に示すことは、数値シミュレーションの正当性やモデルとなる方程式と実際の現象との整合性を判定する際に大きな役割を担う。

Report

(7 results)
  • 2023 Annual Research Report   Final Research Report ( PDF )
  • 2022 Research-status Report
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • Research Products

    (12 results)

All 2023 2022 2019 2018

All Journal Article (1 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 1 results,  Open Access: 1 results) Presentation (11 results) (of which Int'l Joint Research: 1 results,  Invited: 10 results)

  • [Journal Article] Unconditional well-posedness of fifth order KdV type equations with periodic boundary condition2018

    • Author(s)
      Takamori Kato
    • Journal Title

      RIMS Kôkyûroku Bessatsu

      Volume: B70 Pages: 105-129

    • Related Report
      2018 Research-status Report
    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Presentation] Unconditional well-posedness for third order Benjamin-Ono type equations on the torus2023

    • Author(s)
      Takamori Kato
    • Organizer
      French-Japanese one day meeting in Tours
    • Related Report
      2023 Annual Research Report
    • Invited
  • [Presentation] 周期条件境界下での5次KdV方程式に対する適切性と無条件一意性2023

    • Author(s)
      加藤孝盛
    • Organizer
      京都大学NLPDEセミナー
    • Related Report
      2022 Research-status Report
    • Invited
  • [Presentation] Unconditional well-posedness for fifth order KdV type equations on the torus2022

    • Author(s)
      加藤孝盛
    • Organizer
      第61回実函数論・函数解析学合同シンポジウム
    • Related Report
      2022 Research-status Report
    • Invited
  • [Presentation] 周期境界条件下での5次mKdV方程式に対する適切生と無条件一意性2022

    • Author(s)
      加藤孝盛
    • Organizer
      The 19th Linear and Nonlinear Waves
    • Related Report
      2022 Research-status Report
    • Invited
  • [Presentation] Well-posedness in the energy space for the third order Benjamin-Ono equation on the torus2019

    • Author(s)
      加藤孝盛
    • Organizer
      長崎偏微分方程式セミナー
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] Well-posedness in the energy space for third order type Benjamin-Ono equations on the torus2019

    • Author(s)
      加藤孝盛
    • Organizer
      第19回調和解析中央大セミナー
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] 4次微分型シュレディンガー方程式に対する初期値問題の適切性2019

    • Author(s)
      加藤孝盛
    • Organizer
      第141回日本数学会九州支部会
    • Related Report
      2019 Research-status Report
  • [Presentation] Local well-posedness for the periodic fourth order derivative nonlinear Schrodinger equation2019

    • Author(s)
      加藤孝盛
    • Organizer
      RIMS共同研究「線形および非線形方程式の研究」
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] Well-posedness for the higher order Benjamin-Ono equation on the torus2019

    • Author(s)
      加藤孝盛
    • Organizer
      Nonlinear Dispersive equations in Kumamoto 2019
    • Related Report
      2018 Research-status Report
    • Invited
  • [Presentation] Almost sure global well-posedness for fourth order Schrodinger type equations on the torus2018

    • Author(s)
      Takamori Kato
    • Organizer
      Workshop on Stochastic partial differential equations and related topics
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Well-posedness for the higher order Benjamin-Ono equation on the torus2018

    • Author(s)
      加藤孝盛
    • Organizer
      信州大学偏微分方程式研究集会
    • Related Report
      2018 Research-status Report
    • Invited

URL: 

Published: 2018-04-23   Modified: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi