• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

非線形波動方程式における爆発境界の特異性の解析

Research Project

Project/Area Number 18K13447
Research Category

Grant-in-Aid for Early-Career Scientists

Allocation TypeMulti-year Fund
Review Section Basic Section 12020:Mathematical analysis-related
Research InstitutionMusashino University (2021-2023)
Ibaraki National College of Technology (2019-2020)
Meiji University (2018)

Principal Investigator

佐々木 多希子  武蔵野大学, 工学部, 講師 (30780150)

Project Period (FY) 2018-04-01 – 2025-03-31
Project Status Granted (Fiscal Year 2023)
Budget Amount *help
¥4,160,000 (Direct Cost: ¥3,200,000、Indirect Cost: ¥960,000)
Fiscal Year 2021: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2020: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2019: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2018: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Keywords半線形波動方程式 / 爆発境界 / 空間1次元 / 有限時間爆発 / 半線形波動方程式系 / 初期値問題 / 非線形波動方程式 / 特性曲線 / 爆発解 / 爆発現象 / 解析学 / 爆発 / 波動方程式 / 特異性
Outline of Annual Research Achievements

本研究は,非線形波動方程式の爆発境界(爆発する時間と場所を特徴付ける関数がなす曲線や曲面)の数値シミュレーションを行い,爆発境界の性質や爆発境界付近での解の挙動を予測し,数学的な証明を行うものである.
今年度は,Hatem Zaag氏(Universite Sorbonne Paris Nord )とともに,Micro Electro Mechanical Systemsを記述する空間1次元非線形双曲型偏微分方程式において,非局所項を取り除いた方程式に対して,爆発rateや爆発解の挙動の分類,爆発境界の性質,特に爆発境界を構成する点が,方程式の特性曲線の傾きに依存する「characteristic point」なのか,非線形項の代数構造や初期値の情報に依存する「non-characteristic point」なのかを明らかにすることを念頭に,離散モデルの提案を行った.また,数学的な証明のための理論整備を行った.
また,未知関数の空間変数に関する導関数の冪になっている非線形項を持つ非線形波動方程式の古典解の最大存在時間について解析を行った.これが,今まで良く知られていた時間変数に関する導関数の冪の非線形項を持つ非線形波動方程式の場合と,古典解の最大存在時間に関して同じ結果をもたらすことを東北大学の高村博之氏,高松脩氏との共同研究で証明した.解の正値性,つまり初期値が非負値であれば解もそうであるという性質が時間微分項では容易に得られるのに対して,空間微分項ではそれが不可能であるため,爆発境界の解析が難しかった.今回の最大存在時間の解析手法は,解の爆発境界の解析に応用できることが期待される.

Current Status of Research Progress
Current Status of Research Progress

2: Research has progressed on the whole more than it was originally planned.

Reason

正値性の証明が難しく,リアプノフ関数の存在も期待できないため,爆発境界の解析がほぼ手付かずの状態だった未知関数の空間変数に関する導関数の冪になっている非線形項を持つ非線形波動方程式の古典解の最大存在時間の解析ができ,この方程式の爆発境界の解析に応用できることが期待できるため.

Strategy for Future Research Activity

正値性の証明が難しく,リアプノフ関数の存在も期待できないため,爆発境界の解析がほぼ手付かずの状態だった未知関数の空間変数に関する導関数の冪になっている非線形項を持つ非線形波動方程式の古典解の最大存在時間の解析手法を爆発境界の解析に応用する.また,爆発境界を構成する点に方程式の特性曲線の傾きに依存する「characteristic point」を含む場合,非線形項に未知関数の時間変数に関する導関数を含む場合や,未知関数の導関数を含まない非線形項にはあらわれない性質が見えることが期待される.爆発境界がCharacteristic pointを含む場合に焦点を当て,解析を行う.

Report

(6 results)
  • 2023 Research-status Report
  • 2022 Research-status Report
  • 2021 Research-status Report
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • Research Products

    (42 results)

All 2023 2022 2021 2020 2019 2018 Other

All Int'l Joint Research (3 results) Journal Article (10 results) (of which Peer Reviewed: 8 results,  Open Access: 7 results) Presentation (29 results) (of which Int'l Joint Research: 8 results,  Invited: 16 results)

  • [Int'l Joint Research] CNRS,Universite Sorbonne Paris Nord(フランス)

    • Related Report
      2023 Research-status Report
  • [Int'l Joint Research] パリ第13大学/LAGA(フランス)

    • Related Report
      2019 Research-status Report
  • [Int'l Joint Research] パリ第13大学(フランス)

    • Related Report
      2018 Research-status Report
  • [Journal Article] The blow-up curve for a weakly coupled system of semilinear wave equations with nonlinearities of derivative-type (Mathematical structures of integrable systems, their developments and applications)2023

    • Author(s)
      SASAKI, Takiko
    • Journal Title

      Research Institute for Mathematical Sciences, Kyoto University

      Volume: B94 Pages: 37-53

    • Related Report
      2023 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] The lifespan of classical solutions of one dimensional wave equations with semilinear terms of the spatial derivative2023

    • Author(s)
      Takiko Sasaki, Shu Takamatsu, Hiroyuki Takamura
    • Journal Title

      AIMS Mathematics

      Volume: 8 Issue: 11 Pages: 25477-25486

    • DOI

      10.3934/math.20231300

    • Related Report
      2023 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] The combined effect in one space dimension beyond the general theory for nonlinear wave equations2023

    • Author(s)
      Katsuaki Morisawa, Takiko Sasaki, Hiroyuki Takamura
    • Journal Title

      Communications on Pure and Applied Analysis

      Volume: 22 Issue: 5 Pages: 1629-1658

    • DOI

      10.3934/cpaa.2023040

    • Related Report
      2023 Research-status Report 2022 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] 宅配個数の均等な割り振りを考慮した時間枠付き配送計画問題の発見的解法と 量子アニーリングによる計算支援2023

    • Author(s)
      中塚怜花, 佐々木多希子, 友枝明保
    • Journal Title

      武蔵野大学数理工学センター紀要

      Volume: 8 Pages: 34-53

    • Related Report
      2022 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Regularity of the blow-up curve at characteristic points for nonlinear wave equations2022

    • Author(s)
      Sasaki Takiko
    • Journal Title

      Japan Journal of Industrial and Applied Mathematics

      Volume: 39 Issue: 3 Pages: 1055-1073

    • DOI

      10.1007/s13160-022-00548-5

    • Related Report
      2022 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] 混合整数計画法を用いた途中駅に車庫を設置した路線の運転整理支援2022

    • Author(s)
      村田 笑菜 , 佐々木 多希子 , 友枝 明保
    • Journal Title

      武蔵野大学数理工学センター紀要

      Volume: 7 Pages: 63-76

    • NAID

      120007190002

    • Related Report
      2021 Research-status Report
    • Peer Reviewed / Open Access
  • [Journal Article] Convergence of a blow-up curve for a semilinear wave equation2021

    • Author(s)
      Takiko Sasaki
    • Journal Title

      Discrete and Continuous Dynamical Systems - S

      Volume: 14 Issue: 3 Pages: 1133-1143

    • DOI

      10.3934/dcdss.2020388

    • Related Report
      2021 Research-status Report
    • Peer Reviewed
  • [Journal Article] The blow-up curve of solutions to one dimensional nonlinear wave equations with the Dirichlet boundary conditions2020

    • Author(s)
      Tetsuya Ishiwata and Takiko Sasaki
    • Journal Title

      Japan Journal of Industrial and Applied Mathematics

      Volume: 37 Issue: 1 Pages: 339-363

    • DOI

      10.1007/s13160-019-00399-7

    • NAID

      210000163004

    • Related Report
      2019 Research-status Report
    • Peer Reviewed
  • [Journal Article] 1 次元非線形波動方程式の爆発曲線に関する 数値・数学解析2018

    • Author(s)
      佐々木多希子,石渡哲哉
    • Journal Title

      数理解析研究所講究録

      Volume: 2094 Pages: 26-35

    • Related Report
      2018 Research-status Report
    • Open Access
  • [Journal Article] Regularity and singularity of the blow-up curve for a wave equation with a derivative nonlinearity2018

    • Author(s)
      Takiko Sasaki
    • Journal Title

      Advances in Differential Equations

      Volume: 23 Pages: 373-408

    • Related Report
      2018 Research-status Report
  • [Presentation] The blow-up curve for a weakly coupled system of semilinear wave equations with nonlinearities of derivative-type2023

    • Author(s)
      Takiko Sasaki
    • Organizer
      10th International Congress on Industrial and Applied Mathematics
    • Related Report
      2023 Research-status Report
    • Int'l Joint Research
  • [Presentation] The combined effect of one space dimension beyond the general theory for nonlinear wave equations2023

    • Author(s)
      Takiko Sasaki
    • Organizer
      Physique mathematique et equations aux derivees partielles
    • Related Report
      2022 Research-status Report
    • Invited
  • [Presentation] 異なる伝播速度をもつ半線形波動方程式系の爆発曲線について2022

    • Author(s)
      佐々木多希子
    • Organizer
      第37回さいたま数理解析セミナー
    • Related Report
      2022 Research-status Report
  • [Presentation] 異なる伝播速度をもつ半線形波動方程式系の爆発曲線について2022

    • Author(s)
      佐々木多希子
    • Organizer
      東北大学理学研究科数学専攻談話会
    • Related Report
      2022 Research-status Report
    • Invited
  • [Presentation] 非線形波動方程式の爆発現象に関する数値解析と数学解析2022

    • Author(s)
      佐々木多希子
    • Organizer
      RIMS共同研究 (公開型) 数値解析が拓く次世代情報社会~エッジから富岳まで~
    • Related Report
      2022 Research-status Report
    • Invited
  • [Presentation] 物流DXの推進に向けた配送計画に関する数理研究2022

    • Author(s)
      佐々木多希子
    • Organizer
      第7回 Happiness Meeting
    • Related Report
      2022 Research-status Report
  • [Presentation] The combined effect of one space dimension beyond the general theory for nonlinear wave equations2022

    • Author(s)
      Takiko Sasaki
    • Organizer
      RIMS共同研究「Nonlinear and Random Waves」
    • Related Report
      2022 Research-status Report
    • Invited
  • [Presentation] 異なる伝播速度をもつ半線形波動方程式系の爆発曲線の特異性について2022

    • Author(s)
      佐々木多希子
    • Organizer
      2022年度日本数学会秋季総合分科会
    • Related Report
      2022 Research-status Report
  • [Presentation] 非線形波動方程式の爆発現象2022

    • Author(s)
      佐々木多希子
    • Organizer
      武蔵野大学数理工学センター長門研究集会
    • Related Report
      2022 Research-status Report
  • [Presentation] 異なる伝播速度をもつ半線形波動方程式系の爆発曲線の特異性について2022

    • Author(s)
      佐々木多希子
    • Organizer
      RIMS 共同研究(公開型)「可積分系数理の発展とその応用」
    • Related Report
      2022 Research-status Report
    • Invited
  • [Presentation] The combined effect in one space dimension beyond the general theory for nonlinear wave equations2022

    • Author(s)
      佐々木多希子
    • Organizer
      偏微分方程式の臨界現象と正則性理論及び漸近解析
    • Related Report
      2022 Research-status Report
    • Invited
  • [Presentation] 異なる伝播速度をもつ半線形波動方程式系の爆発曲線について2022

    • Author(s)
      佐々木多希子
    • Organizer
      九州関数方程式セミナー
    • Related Report
      2022 Research-status Report
    • Invited
  • [Presentation] 異なる伝播速度をもつ半線形波動方程式系の爆発境界について2022

    • Author(s)
      佐々木多希子
    • Organizer
      2021年度 武蔵野大学龍谷大学連携シンポジウム
    • Related Report
      2021 Research-status Report
  • [Presentation] 異なる伝播速度をもつ半線形波動方程式系の爆発境界について2022

    • Author(s)
      佐々木多希子
    • Organizer
      第37回 松山キャンプ
    • Related Report
      2021 Research-status Report
  • [Presentation] 非線形波動方程式の爆発曲線の微分可能性2021

    • Author(s)
      佐々木多希子
    • Organizer
      「有限時間特異性」勉強会
    • Related Report
      2021 Research-status Report
    • Invited
  • [Presentation] Regularity of the blow-up curve at characteristic points for the nonlinear wave equation2021

    • Author(s)
      佐々木多希子
    • Organizer
      応用解析研究会
    • Related Report
      2021 Research-status Report
    • Invited
  • [Presentation] 非線形波動方程式の爆発曲線2021

    • Author(s)
      佐々木多希子
    • Organizer
      第40回MCMEセミナー
    • Related Report
      2020 Research-status Report
    • Invited
  • [Presentation] Regularity of the blow-up curve at characteristic points for the nonlinear wave equation2021

    • Author(s)
      Takiko Sasaki
    • Organizer
      The 22nd Northeastern Symposium on Mathematical Analysis
    • Related Report
      2020 Research-status Report
    • Invited
  • [Presentation] Regularity of the blow-up curve at characteristic points for the nonlinear wave equation2021

    • Author(s)
      佐々木多希子
    • Organizer
      第10回室蘭非線形解析研究会
    • Related Report
      2020 Research-status Report
    • Invited
  • [Presentation] Regularity of the blow-up curve at characteristic points for the non- linear wave equation2021

    • Author(s)
      Takiko Sasaki
    • Organizer
      Czech-Japanese Seminar in Applied Mathematics
    • Related Report
      2020 Research-status Report
    • Int'l Joint Research
  • [Presentation] The blow-up curve of solutions for semilinear wave equations with Dirichlet boundary conditions in one space dimension2019

    • Author(s)
      佐々木多希子
    • Organizer
      東京理科大学 談話会
    • Related Report
      2019 Research-status Report
    • Invited
  • [Presentation] The blow-up curve of solutions for semilinear wave equations with Dirichlet boundary conditions in one space dimension2018

    • Author(s)
      Takiko Sasaki
    • Organizer
      Workshop on Nonlinear Partial Differential Equations Japan-China Joint Project for Young Mathematicians 2018
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] 1次元非線形波動方程式の爆発曲線に関する数値・数学解析2018

    • Author(s)
      佐々木多希子
    • Organizer
      第57回東工大数理解析セミナー
    • Related Report
      2018 Research-status Report
    • Invited
  • [Presentation] The blow-up curve of solutions for semilinear wave equations with Dirichlet boundary conditions in one space dimension2018

    • Author(s)
      Takiko Sasaki
    • Organizer
      The 11th Mathematical Society of Japan (MSJ) Seasonal Institute (SI) ‘The Role of Metrics in the Theory of Partial Differential Equations’
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] The blow-up curve of solutions for semilinear wave equations with Dirichlet boundary conditions in one space dimension2018

    • Author(s)
      Takiko Sasaki
    • Organizer
      The Seventh China-Japan-Korea Joint Conference on Numerical Mathematics
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research
  • [Presentation] The blow-up curve for semilinear wave equations with small spatial velocity2018

    • Author(s)
      Takiko Sasaki
    • Organizer
      International Conference Czech-Japanese Seminar in Applied Mathematics 2018
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research
  • [Presentation] Numerical and mathematical analysis for the blow-up curve of solutions to 1-dimensional nonlinear wave equations2018

    • Author(s)
      Takiko Sasaki
    • Organizer
      East Asia section of SIAM 2018
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research
  • [Presentation] Error analysis of splitting methods for semilinear evolution equations2018

    • Author(s)
      Takiko Sasaki
    • Organizer
      Pan-American Workshop 2018
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research
  • [Presentation] The blow-up curve for semilinear wave equations with small spatial velocity2018

    • Author(s)
      Takiko Sasaki
    • Organizer
      日本数学会 2018年度秋季総合分科会
    • Related Report
      2018 Research-status Report

URL: 

Published: 2018-04-23   Modified: 2024-12-25  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi