• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

Mathematical modeling for understanding phyllotactic patterns and its geometrical study

Research Project

Project/Area Number 18K13452
Research Category

Grant-in-Aid for Early-Career Scientists

Allocation TypeMulti-year Fund
Review Section Basic Section 12040:Applied mathematics and statistics-related
Research InstitutionSALESIAN POLYTECHNIC (2019-2021)
Hokkaido University (2018)

Principal Investigator

Sushida Takamichi  サレジオ工業高等専門学校, その他部局等, 講師 (00751158)

Project Period (FY) 2018-04-01 – 2022-03-31
Project Status Completed (Fiscal Year 2021)
Budget Amount *help
¥3,770,000 (Direct Cost: ¥2,900,000、Indirect Cost: ¥870,000)
Fiscal Year 2021: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2020: ¥650,000 (Direct Cost: ¥500,000、Indirect Cost: ¥150,000)
Fiscal Year 2019: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2018: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
Keywords葉序 / ボロノイ図 / 連分数展開 / 複素力学系 / タイリング / 円板充填 / 反応拡散方程式 / バーテックスモデル
Outline of Final Research Achievements

Voronoi tilings with parabolic spiral lattices has been proposed as a geometric model of spiral phyllotaxis which are observed to plants such as sunflowers. However, its mathematical structure was not mathematically clear. In this study, about Voronoi tilings with generalized Archimedean spiral lattices including the parabolic spiral lattices, we showed comprehensively mathematical structures as follows. Grain boundaries consist of heptgons, hexagons, and pentagons, and the number of polygons is determined by denominators of convergents obtained from the regular continued fraction expansion of the divergence angle; the denseness of bifurcation curves of parameters; and the area convergence of Voronoi tiles. Moreover, as a ripple effect of the geometric study of Voronoi tiling for phyllotactic patterns, it was clarified from the statistical analysis of experimental data that patterns of compound eyes of Drosophila follow Voronoi tessellations.

Academic Significance and Societal Importance of the Research Achievements

20世紀後半に提案された放物螺旋格子を含む一般アルキメデス螺旋格子のボロノイタイリングの数理構造を明らかにした。さらに、ボロノイタイルの面積に対する収束および発散の条件を明らかにし、放物螺旋格子の場合に限り、面積が円周率に収束することを示した。対数螺旋格子や放物螺旋格子などではエネルギー的に最適な配置は黄金比で記述されることが知られているが、複素力学系分野で研究されている複雑な数理構造を有する超冪乗点列においても黄金比が関連することを数値的に示し、新たな展開を与えた。さらに、ショウジョウバエの複眼に対する幾何学的研究では、ボロノイ分割が細胞組織の形態形成で見られる例を新たに示すことができた。

Report

(5 results)
  • 2021 Annual Research Report   Final Research Report ( PDF )
  • 2020 Research-status Report
  • 2019 Research-status Report
  • 2018 Research-status Report
  • Research Products

    (9 results)

All 2022 2021 2020 2019 2018

All Journal Article (2 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 2 results,  Open Access: 1 results) Presentation (7 results)

  • [Journal Article] Tiling mechanisms of the Drosophila compound eye through geometrical tessellation2022

    • Author(s)
      Takashi Hayashi, Takeshi Tomomizu, Takamichi Sushida, Masakazu Akiyama, Shin-Ichiro Ei, Makoto Sato
    • Journal Title

      Current Biology

      Volume: 32 Issue: 9 Pages: 1-9

    • DOI

      10.1016/j.cub.2022.03.046

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Open Access
  • [Journal Article] Area convergence of Voronoi cells on spiral lattices2021

    • Author(s)
      Yamagishi Yoshikazu、Sushida Takamichi、Sadoc Jean-Fran?ois
    • Journal Title

      Nonlinearity

      Volume: 34 Issue: 5 Pages: 3163-3183

    • DOI

      10.1088/1361-6544/abe733

    • Related Report
      2021 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Presentation] アルキメデス螺旋格子のボロノイ領域の面積の収束2020

    • Author(s)
      山岸義和, 須志田隆道, Jean-Francois Sadoc
    • Organizer
      日本応用数理学会2020年度年会
    • Related Report
      2020 Research-status Report
  • [Presentation] 一般アルキメデス螺旋格子によるボロノイタイリング2019

    • Author(s)
      須志田 隆道, 山岸義和
    • Organizer
      日本数学会2019年度年会
    • Related Report
      2018 Research-status Report
  • [Presentation] 一般アルキメデス螺旋格子による葉序的なボロノイタイリング2018

    • Author(s)
      須志田 隆道, 山岸義和
    • Organizer
      応用数学合同研究集会
    • Related Report
      2018 Research-status Report
  • [Presentation] 一般アルキメデス螺旋格子による葉序的なボロノイタイリング2018

    • Author(s)
      須志田 隆道
    • Organizer
      2018年軽井沢グラフと解析研究集会II
    • Related Report
      2018 Research-status Report
  • [Presentation] Phyllotactic Voronoi tilings on the generalized Archimedean spiral lattices2018

    • Author(s)
      Takamichi Sushida, Yoshikazu Yamagishi
    • Organizer
      RIMS cooperative research, Tilings, quasiperiodicity and related topics
    • Related Report
      2018 Research-status Report
  • [Presentation] 一般アルキメデス螺旋格子による葉序的なボロノイタイリング2018

    • Author(s)
      須志田 隆道, 山岸義和
    • Organizer
      日本応用数理学会2018年度年会
    • Related Report
      2018 Research-status Report
  • [Presentation] 一般アルキメデス螺旋格子による葉序的なボロノイタイリング2018

    • Author(s)
      須志田 隆道
    • Organizer
      第12回応用数理研究会
    • Related Report
      2018 Research-status Report

URL: 

Published: 2018-04-23   Modified: 2023-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi