• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to previous page

有限体積法によって生成される楕円型作用素の解析半群理論と非線形問題への応用

Research Project

Project/Area Number 18K13460
Research Category

Grant-in-Aid for Early-Career Scientists

Allocation TypeMulti-year Fund
Review Section Basic Section 12040:Applied mathematics and statistics-related
Research InstitutionTokyo University of Science

Principal Investigator

周 冠宇  東京理科大学, 理学部第一部応用数学科, 助教 (70772705)

Project Period (FY) 2018-04-01 – 2020-03-31
Project Status Discontinued (Fiscal Year 2019)
Budget Amount *help
¥4,030,000 (Direct Cost: ¥3,100,000、Indirect Cost: ¥930,000)
Fiscal Year 2021: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2020: ¥1,040,000 (Direct Cost: ¥800,000、Indirect Cost: ¥240,000)
Fiscal Year 2019: ¥910,000 (Direct Cost: ¥700,000、Indirect Cost: ¥210,000)
Fiscal Year 2018: ¥1,300,000 (Direct Cost: ¥1,000,000、Indirect Cost: ¥300,000)
Keywords有限体積法 / 有限要素法 / Keller--Segel 方程式 / Stokes--Darcy 方程式 / Stokes方程式 / 処罰法 / Keller-Segel方程式 / 離散解析半群
Outline of Annual Research Achievements

(1) 前年度の結果(有限体積法に関する離散半群の理論)を利用して,Keller--Segel 方程式に対する質量と正値性を保存する有限体積法 (FVM) の最適誤差評価を得られた.離散解の事前評価に工夫を入れて,安定性を示した.2017に発表された先行研究の結果に比べて,収束オーダーを改善し,離散解の安定性仮定も不要になった.
意義を重要性:我々はFVMの離散半群理論を複雑な非線形方程式に適用することを成功した.本研究の解析手法は Keller--Segel 方程式だけではなく,他の非線形方程式にも適用できる.FVM 離散半群理論の応用にとって重要な貢献と言える.
(2) DG 要素は離散 Sobolev 空間であり,研究課題に関連する.不連続な Galerkin (DG) 要素を利用する Stokes--Darcy 方程式の Penalty 法と Nitsche's 法の研究を行った.最適な安定性と誤差評価を得るため,我々は DG 要素に関する離散 H^{1/2} ノルムと逆 Trace 作用素の理論を構築した.
意義を重要性:本研究で得られた離散 H^{1/2} ノルムと逆 Trace 作用素に関する理論結果は DG 法の一つの基盤理論であり,様々な問題に応用できる.

Report

(2 results)
  • 2019 Annual Research Report
  • 2018 Research-status Report
  • Research Products

    (19 results)

All 2019 2018 Other

All Int'l Joint Research (3 results) Journal Article (2 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 2 results) Presentation (11 results) (of which Int'l Joint Research: 7 results,  Invited: 5 results) Funded Workshop (3 results)

  • [Int'l Joint Research] The Hong Kong Polytechnic University(中国)

    • Related Report
      2019 Annual Research Report
  • [Int'l Joint Research] The Chinese University of Hong Kong(中国)

    • Related Report
      2019 Annual Research Report
  • [Int'l Joint Research] The Hong Kong Polytechnic University/The Chinese University of Hong Kong/電子科技大学(中国)

    • Related Report
      2018 Research-status Report
  • [Journal Article] Some DG schemes for the Stokes-Darcy problem using P1/P1 element2019

    • Author(s)
      Guanyu Zhou, Takahito Kashiwabara, Issei Oikawa, Eric Chung and Ming-Cheng Shiue
    • Journal Title

      Jpn. J. Ind. Appl. Math.

      Volume: 36

    • Related Report
      2019 Annual Research Report
    • Peer Reviewed / Int'l Joint Research
  • [Journal Article] Penalty method with Crouzeix-Raviart finite element approximation for the Stokes equations under the slip boundary condition2019

    • Author(s)
      Takahito Kashiwabara, Issei Oikawa, and Guanyu Zhou
    • Journal Title

      ESAIM: Mathematical Modelling and Numerical Analysis

      Volume: 印刷中 Issue: 3 Pages: 869-891

    • DOI

      10.1051/m2an/2019008

    • Related Report
      2019 Annual Research Report 2018 Research-status Report
    • Peer Reviewed
  • [Presentation] Keller--Segel 方程式の保存型の有限体積法について2019

    • Author(s)
      周冠宇
    • Organizer
      UTNAS数値解析セミナー
    • Related Report
      2019 Annual Research Report
    • Invited
  • [Presentation] A penalty method for the Stokes equations with the slip boundary condition on curved boundary2019

    • Author(s)
      Guanyu Zhou
    • Organizer
      Workshop for young scholars "Control and inverse problems on waves, oscillations and flows -Mathematical analysis and computational methods-"
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research / Invited
  • [Presentation] The penalty approach and Nitsche's method for the interface boundary condition of the Stokes--Darcy problem and the DG approximation2019

    • Author(s)
      Guanyu Zhou
    • Organizer
      EASIAM 2019
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research
  • [Presentation] On the discrete H^{1/2} norm and the lifting lemmas for the nonconforming elements2019

    • Author(s)
      Guanyu Zhou
    • Organizer
      A3 Workshop on uid dynamics and related topics
    • Related Report
      2019 Annual Research Report 2018 Research-status Report
    • Int'l Joint Research / Invited
  • [Presentation] Stokes 方程式の滑り境界問題に対するDG法の解析について2019

    • Author(s)
      周冠宇
    • Organizer
      不連続 Galerkin 有限要素法の数学理論とその周辺:これからの展開
    • Related Report
      2019 Annual Research Report
    • Invited
  • [Presentation] Analysis on the fictitious domain method with penalty for the various types of PDEs2019

    • Author(s)
      Guanyu Zhou
    • Organizer
      ICIAM2019
    • Related Report
      2019 Annual Research Report
    • Int'l Joint Research
  • [Presentation] Stokes 方程式の滑り境界問題に対するDG法 の解析について2019

    • Author(s)
      周 冠宇
    • Organizer
      不連続Galerkin 有限要素法の数学理論とその周辺:これからの展開
    • Related Report
      2018 Research-status Report
  • [Presentation] A penalty method to the Stokes-Darcy problem with a smooth interface boundary using the DG element2018

    • Author(s)
      Guanyu Zhou
    • Organizer
      EASAIM
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research
  • [Presentation] A penalty method for the Stokes-Darcy problem with curved interface boundary and the discontinuous Galerkin approximation2018

    • Author(s)
      Guanyu Zhou
    • Organizer
      CSIAM
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research
  • [Presentation] 滑らかな界面を持つStokes-Darcy 方程式のDG法について2018

    • Author(s)
      周 冠宇
    • Organizer
      次世代の科学技術を支える数値解析学の基盤整備と応用展開
    • Related Report
      2018 Research-status Report
    • Invited
  • [Presentation] A penalty method to the Stokes-Darcy problem with a smooth interface boundary using the DG element2018

    • Author(s)
      Guanyu Zhou
    • Organizer
      The Seventh China-Japan-Korrea Joint Conferrence on Numerrical Mathemattics
    • Related Report
      2018 Research-status Report
    • Int'l Joint Research
  • [Funded Workshop] The Seventh China-Japan-Korea Joint Conference on Numerical Mathematics2018

    • Related Report
      2018 Research-status Report
  • [Funded Workshop] CSIAM2018

    • Related Report
      2018 Research-status Report
  • [Funded Workshop] EASIAM20182018

    • Related Report
      2018 Research-status Report

URL: 

Published: 2018-04-23   Modified: 2021-01-27  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi