Project/Area Number |
18K13468
|
Research Category |
Grant-in-Aid for Early-Career Scientists
|
Allocation Type | Multi-year Fund |
Review Section |
Basic Section 13010:Mathematical physics and fundamental theory of condensed matter physics-related
|
Research Institution | The University of Tokyo |
Principal Investigator |
Lee Jaeha 東京大学, 生産技術研究所, 助教 (20816607)
|
Project Period (FY) |
2018-04-01 – 2022-03-31
|
Project Status |
Completed (Fiscal Year 2021)
|
Budget Amount *help |
¥4,030,000 (Direct Cost: ¥3,100,000、Indirect Cost: ¥930,000)
Fiscal Year 2021: ¥780,000 (Direct Cost: ¥600,000、Indirect Cost: ¥180,000)
Fiscal Year 2020: ¥520,000 (Direct Cost: ¥400,000、Indirect Cost: ¥120,000)
Fiscal Year 2019: ¥1,170,000 (Direct Cost: ¥900,000、Indirect Cost: ¥270,000)
Fiscal Year 2018: ¥1,560,000 (Direct Cost: ¥1,200,000、Indirect Cost: ¥360,000)
|
Keywords | 量子基礎論 / 量子測定 / 不確定性関係 / 弱値 / 弱測定 / 精密測定 / 誤差 / 擾乱 / 量子情報 / 量子古典対応 / 擬確率 |
Outline of Final Research Achievements |
The research project resulted in a universal formulation of the uncertainty principle, which is known as one of the remarkable characteristics of non-classical theory (quantum theory). In particular, the universal formulation is shown to entail, as corollaries to its special cases, several notable formulations including the standard Kennard-Robertson relation as well as the more recent Ozawa relations. An analysis of the technique of conditioning in quantum measurements (commonly known as the weak measurement), which is expected to improve measurement precision in the face of technical imperfections so that it may approach the fundamental limit dictated by quantum theory, has also been conducted. Based on the theoretical framework that was proposed in the previous research project for the firm evaluation of the validity of the measurement, the analysis confirmed the validity of some of the well-known applications of the technique, thereby providing theoretical support for its efficacy.
|
Academic Significance and Societal Importance of the Research Achievements |
不確定性原理は、量子論の根幹として理論における重要な地位を占めることはもとより、様々な量子現象の源泉であることに鑑みて、その深い理解は今後の量子技術の一層の発展において肝要となります。本研究成果は、量子論における不確定性の根源に迫るものであって、その包括的理解への道標となり得るものと期待されます。また精密測定技術は、科学技術の発展に不可欠なものであって、量子測定においては原理的な精度限界への到達を理想とします。量子的な条件付けの技法は、測定精度の向上をもたらす技術として有望視されており、その有意性に関する本研究成果は、今後の応用を設計する上でも有用な理論的指針となることが期待されます。
|